NASA Technical Memorandum 86829 -

Adaptive Inverse Control for
Rotorcraft Vibration Reduction

Stephen A. Jacklin

October 1985

(NASA-TK~8682S) ADAPTIVE INVEHKSE CONTRGL N87-14910 =
FCR RCTOBCKAFT VIERATICN RKELUCTICN Ph,D.
Ttesis (NASA) 192 f CSCL 620

Unclas
G3/03 43576

NNASN

National Aeronautics and
Space Administration






NASA Technical Memorandum 86829

Adaptive Inverse Control for
Rotorcraft Vibration Reduction

Stephen A. Jacklin, Ames Research Center, Moffett Field, California

October 1985

NASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035







ABSTRACT

This thesis extends the Least Mean Square (LMS) algorithm to solve the

multiple-input, multiple-output problem of alleviating N/Rev helicopter fuselage
wibration by means of adaptive inverse control. A frequency domain locally linear
- model is used to represent the transfer matrix relating the higher harmonic pitch
control inputs to the harmonic vibration outputs to be controlled. By using
the inverse matrix as the controller gain matrix, an adaptive inverse regulator
is formed to alleviate the N/Rev vibration. The stability and rate of convergence

properties of the extended LMS algorithm are discussed. It is shown that the
stability ranges for the elements of the stability gain matrix are directly related

to the eigenvalues of the vibration signal information matrix for the learning
phase, but not for the control phase. The overall conclusion is that the LMS
adaptive inverse control method can form a robust vibration control system, but
will require some tuning of the input sensor gains, the stability gain matrix,

and the amount of control relaxation to be used. The learning curve of the
controller during the learning phase is shown to be quantitatively close to that

predicted by averaging the learning curves of the normal modes. For higher
order transfer matrices, a rough estimate of the inverse is needed to start the
-algorithm efficiently. The simulation results indicate that the factor which most
influences LMS adaptive inverse control is the product of the control relaxation
and the the stability gain matrix. A small stability gain matrix makes the
controller less sensitive to relaxation selection, and permits faster and more
stable vibration reduction, than by choosing the stability gain matrix large
and the control relaxation term small. It is shown that the best selections
of the stability gain matrix elements and the amount of control relaxation is
basically a compromise between slow, stable convergence and fast convergence
with increased possibility of unstable identification. In the simulation studies,
the LMS adaptive inverse control algorithm is shown to be capable of adapting
the inverse (controller) matrix to track changes in the flight conditions. The
algorithm converges quickly for moderate disturbances, while taking longer for
larger disturbances. Perfect knowledge of the inverse matrix is not required for
good control of the N/Rev vibration. However it is shown that measurement
noise will prevent the LMS adaptive inverse control technique from controlling
the vibration, unless the signal averaging method presented is incorporated into
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I. INTRODUCTION

This thesis presents an extension of the Least Mean Square (LMS) al-
gorithm to solve the multiple-input, multiple-output problem of alleviating
N/Rev helicopter fuselage vibration‘ by means of adaptive inverse control.
The reduction or alleviation of helicopter N/Rev vibration will reduce main-
tenance requirements, while at the same time increase ride quality and helicop-
ter reliability. The solution presented in this paper uses the extended LMS
algorithm to estimate the local inverse*of the transfer matrix relating the
higher harmonic pitch control inputs to the harmonic vibration outputs to
be controlled. By using the inverse matrix as the controller gain matrix, an
adaptive inverse regulator is formed to alleviate the N/Rev vibration. The
contributions made in this thesis are first to extend the LMS algorithm of
Widrow and Hoff to solve the multiple-input, multiple-output helicopter vibra-
tion control problem, and second to formulate the helicopter vibration problem
in a manner suitable for solution by the LMS adaptive inverse control tech-

nique.

Prior to presenting the multiple-input, multiple-output LMS adaptive inverse
control algorithm extension, the nature of the helicopter vibration control probler:
will be explained. A literature review of previous work follows this introduction.
Though not intended to review previous work in an exhaustive fashion, work
relevant to the control of helicopter vibration by active blade pitch controls, and
work related to the development of the LMS algorithm are cited. A complete
description of the vibration control problem is then given in terms of inverse
modeling concepts and terminology related to modeling the helicopter as a linear

system in the frequency domain. Once the control problem nomenclature and



formulation are clearly delineated, the extended LMS algorithm is presented
and used to solve the vibration control problem. In the analysis section which
follows, the stability and rate of convergence properties are discussed. Here,
the effect of controller imitial conditions and the choice of the stability gain
matrix elements play an important role in overall algorithm performance. It
will be shown that the stability ranges for the elements of the stability gain
matrix are directly related to the eigenvalues of the vibration signal information
matrix. Lastly, the results obtained from simulation will be presented for a variety
of cases, including the effects of measurement noise and changes in operating

conditions.



II. PREVIOUS WORK

This section presents a review of previous work. The review has been
divided into two sections. The first section reviews work related to the active
control of helicopter vibration using frequency domain models and inverse control
techniques. The second part presents the development of the LMS algorithm.
Though this review of previous work is not comprehensive, it will serve to acquaint
the reader with most of the important contributions upon which this thesis
builds.

2.1

ACTIVE CONTROL OF HELICOPTER VIBRATION
USING FREQUENCY DOMAIN MODELS

In forward flight, asymmetrical airflow through the rotor disk of the
helicopter produces a fuselage vibration spectrum which tends to be dominated
by multiples of the N/Rev component (Johnson, 1980). Here, N denotes the
number of blades in the rotor. As viewed from the nonrotating or fuselage
reference frame, the N rotor blades produce N cycles of vibration per rotor
revolution. The vertical hub shears and blade stresses also have a similar periodic

nature.

Researchers in rotorcraft development recognized early on that the elimina-
tion of these periodic vibrations and loads would be valuable in extending the
useful life of the helicopter and improve its ride quality. Hence, passive vibra-

tion control mechanisms have been engineered into the helicopter almost from



its inception (Gessow and Meyers, 1952). Though these passive devices enhance
vehicle operation, they typically have the disadvantages of adding to the gross
weight of the helicopter and increasing the profile drag power loss. In recent
years, advances in digital computation circuitry have offered the the option of
implementing computer-controlled, active vibration reduction methods. These
methods hold the potential for not only reducing the weight of the helicopter, but
also the capability to adaptively reduce the periodic rotor loads and vibrations at

their source.

Though it is difficult to say who was first in beginning the active vibration
control studies, McCloud and Kretz (1974, 1975) seem to have developed the
first linear, frequency domain model concept. In 1974 they examined the effects
of introducing higher harmonic control into the rotating system of the jet-flap
rotor. The jet-flap was excited at harmonics of 2, 3, 4, 5, 6, and 7 per Rev, and
the 2, 3, 4, 5, and 6 harmonics of blade stress and rotor loads were obtained.
The objective of the test was to see what effect higher harmonic blade pitch
had on the periodic nature of the rotor loads and blade stresses. With the
assistance of Jean N. Aubrun, a frequency domain model was developed to relate
the various harmonics of rotor loads and vibration to the higher harmonics of
jet-flap excitation. This model postulated that for a quasi-static wind tunnel
operating condition, the higher harmonic amplitudes of fuselage vibration and
rotor loads could be linearly related to the harmonics of jet-flap excitation.
The matrix relating these harmonics was calculated by an off-line weighted
least square error technique. This transfer matrix was termed the T matrix.
In later theoretical studies the optimal control was formed as a deterministic
function of the T matrix and sensed vibration. Further open-loop studies were

subsequently tested by McCloud and Weisbrich on the Multicyclic Controllable



Twist Rotor (MCTR). This rotor was similar to the jet-flap rotor in that
higher harmonic control was introduced directly into the rotating system. Again
a frequency domain transfer function or T matrix was identified by an off-
line least square error technique. The optimal open-loop deterministic control
was calculated off-line using the test data, but not directly applied to the

rotor.

The next key development in higher harmonic vibration control was to
introduce the higher harmonic controls directly into the rotating system by
means of swashplate oscillation. In 1974, Sissingh and Donham conducted a
test in which the swashplate was oscillated at higher harmonic frequencies.
They then identified transfer matrices relating higher harmonics of cyclic pitch
to the higher harmonics of vibratory hub moment and vertical shears with
an off-line least square error technique. Using sensed vibration data and the
inverse of the T matrix, a control law was computed and applied to the

rotor.

In the years that followed, several other experimenters closed the loop
with respect to sensed vibration, and various versions of inverse control were
presented. In 1978, Powers studied the harmonic response of hub forces to
harmonic swashplate oscillation. The loop was closed only with respect to
the operator, who calculated the <control off-line, using direct inversion of
the T matrix. In 1980, Shaw and Albion teéted a fully closed-loop version
of the inverse control scheme. The control used was swashplate oscillation
at N/Rev and the sensed feedback parameters were the third, fourth, and
fifth harmonics of root flapwise bending. The transfer matrix was computed
by an off-line least squares method and inverted. This inverse matrix was

then used as a fixed-gain controller matrix, since it effectively described the



relationship between the swashplate oscillation inputs, and the flapwise bending
outputs. This method of inverse control worked well at one speed, but
not at others, because at other flight conditions the control authority was
exceeded, or perhaps because the transfer function was no longer valid at the
new control point. In any event, it seemed that on-line identification and
variable control authority would be required to make the inverse control method

viable.

However, rather than pursuing these issues, the majority of researchers
have since studied stochastic methods to identify and track the transfer matrix,
and LQG theory to compute the control as either deterministic or stochas-
tic functions of the transfer matrix and the measured or identifed vibra-
tion. The interested reader is referred to optimal control texts such as Bryson
and Ho, Goodwin and Payme, or Sage and Melsa to gain an appreciation of
these modern estimation ;dnd control techniques. Johnson (1982), however,
provides an excellent analysis of these state of the art identification and con-
trol techniques in the context of the helicopter vibration control problem.
Davis (1983) presents a computer simulation of these methodologies includ-
ing the Kalman Filter approach of Taylor, Farrar, and Mio (1980) and the
cautious and dual control approaches as given by Molusis, Hammond, and Cline

(1981).

Thouch some of these concepts appear very promising, the comr lexity

W::posable | The L\IS alvorlthm of Wldrow and Hoﬁ was studxeq and ex-
tended in an effort to find such a simpler approach. Inverse control is
simple to implement, but only effective if good knowledge of the lccal trans-

fer matrix inverse is available. The LMS algorithm may serve as a means

"



of providing this knowledge, in a computationally fast and efficient man-

ner.

2.2

DEVELOPMENT OF THE LMS ALGORITHM

The Least Mean Square (LMS) algorithm of Widrow and Hoff was ini-
tially designed to tune or adjust filters. In these studies, Widrow con-
sidered filters to be broadly defined as any device or system that processed
incoming signals or other data in such a way as to eliminate noise, smooth
the signals, or identify each signal as belonging to a class, or predict the
next input signal from moment to moment (Widrow 1970). The early
development of the LMS algorithm was focused on electrical engineering

problems.

Widrow and his colleagues derived the LMS algorithm for single-input, single-
output systems (Widrow 1960). The typical plant model considered a single input
signal, which was delayed several times. After each delay, the signal was sent
to the next delay, and also to a summer node after having been multiplied by
a gain. All the signals were summed together to form a single output. The
optimization problem was to find the value of the gains and/or delays which

would tune the filter in some optimal sense. This type of model had many useful

applications.

In 1967, Widrow, Mantey, Griffiths, and Goode proposed to optimally tune



antenna sensitivity using the LMS algorithm. In this case the tapped delay
line model was used to represent a single signal source received by an array
of antennas. Due to the configuration of the antennas in space, each antenna
would receive the signal with a slightly different transmission delay time. It was
postulated that the signals from different antennas could be optimally delayed
such that when added together they would produce a maximum signal output.
In this problem, the LMS algorithm was used to identify a vector of signal delay

times.

A similar method was proposed to Identify signals in the presence of
interfering noise sources. As in the previous example, the concept involved
optimally delaying the signals from several sensors, and adding them together
to achieve the desired result. Omne application was a fetal heart monitor
(Widrow 1975), in which the purpose was to track the fetal heart EKG in
the presense of the mother’s EKG, an interfering noise source. Microphones
were placed in an array on the mother’'s abdomen. Since the microphones
were located at varying distances from the mother and fetal hearts, it was
postulated that by delaying the signal from each microphone by just the right
amount, it would be possible to amplify the fetal heart EKG, while attenuating
the mother’s EKXG at the same time. The model used to represent the filter
was a tapped delay line, as in the previous example. The LMS algorithm
was again used to tune the filter, by finding the optimal vector of time

delays.

In 1979, Widrow, McCool, and Medoff proposed using the LMS al-
gorithm for the purposes of adaptive inverse identification. They proposed
that if a plant inverse were known, a servo device could be made to fol-

low an input command signal. No modeling or simulation of a multiple-



input, multiple-output plant was presented in the paper. The model
used in the paper was again the tapped delay line model, indicating that
the present work concerned the single-input, single-output case. An al-
lusion to adaptive inverse control of multiple-input, multiple-output sys-
tems was made, but with no examples, target applications, or models

referenced.

The next section presents the helicopter vibration control problem as a

multiple-input, multiple-output adaptive inverse control application problem.




III. INVERSE CONTROL OF HELICOPTER VIBRATION

The multiple-input, multiple-output control problem presented here in-
volves determining the higher harmonijc blade pitch motions to reduce the
N/Rev fuselage vibration. In order to use active controls to reduce vibra-
tion, a model is needed to mathematically state how the input higher harmonic
blade pitch is related to the measured harmonics of fuselage vibration. The
formulation of such a model based on the helicopter structural motion con-
straints and aerodynamic loadings is, at present, an intractable problem. It
is therefore necessary to identify the elements of an assumed model from the
higher harmonic pitch inputs and vibration outputs. In this section, the con-
cept of inverse active control will be presented, which will serve to define the
vibration control problem at hand, as well as explain the nomenclature used

herein.

3.1

HIGHER HARMONIC BLADE PITCH CONTROL

The control proposed to reduce fuselage vibration is termed higher harmonic
or multicyclic blade pitch oscillation. As the names imply, the blade pitch
is forced or oscillated at multiples of the rotor rotational frequency. It is
convenient to express the blade pitch motion as a Fourier series expansion as

follows:
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© = 6o + 61cCos(¥) + 815 Sin(¥) + boc Cos(2¥) + 625 Sin(2¥)

+63¢ Cos(3) + 35 Sin(3¥) + f4¢ Cos(4%) + 045 Sin(4¥) 4 ...

where,

6o
f1c
f1s

and,
b2c
bas
f3c
b3s
b4c
f4s
bsc

055

The first three coefficients specify the primary controls which are used
to trim the helicopter to a desired flight attitude. The remaining coefficients

are the higher harmonic terms, and are potentially available to control vibra-

tion.

The blade pitch control is considered to be implemented from actuators
located in the nonrotating system.
control from the rotating system, as well.)

the nonrotating system to the rotating system by means of the swashplate.

l

I

Il

Collective Cyclic Pitch
Lateral Cyclic Pitch
Longitudinal Cyclic Pitch

The Higher Harmonics of
Cyclic Blade Pitch

11
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The control is transferred from



The swashplate is basically a pair of annular plates, positioned around the
rotor shaft. While the lower swashplate is stationary, and attached to the
fixed system actuators, the upper swashplate rotates with the rotor, and is
attached to the blade pitch control rods. Differential control of rotor blade
pitch is obtained by tilting the swashplate. For helicopter trim control, the
swashplate tilt is held quasi-steady. Higher harmonic control is implemented by
oscillating the swashplate tilt in a sinusoidal fashion, relative to the reference blade

angle.

Because the higher harmonic control is of different frequency and amplitude
than the trim controls, separate actuation systems are typically required. Figures
1 and 2 are presented to give the reader some insight as to how the higher
harmonic motion used to alleviate vibration may be mechanically superimposed
on the primary controls used to trim the helicopter. In figure 1, the higher
harmonic actuators move the pivot point of the bell crank of the trim control
actuator linkage. An in-line actuator arrangement is also possible, as shown in
figure 2. Note that in both cases, the actuators are in the fixed system and
move the stationary swashplate. The rotating swashplate follows the stationary
swashplate and introduces cyclic blade pitch proportional to the swashplate

position.

12



]
i

Higher Harmonic

Primary

Figure 1. Mechanical Superposition of Trim and Higher Harmonic (Multicyclic)
Pitch Controls; Bell Crank Arrangement

Figure 2. Mechanical Superposition of Trim and Higher Harmonic (Multicyclic)
Pitch Controls; In-Line Actuator Arrangement
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The control problem is to determine the phase and amplitude of cyclic
pitch (swashplate) oscillation at N/Rev necessary to reduce fuselage vibration
at N/Rev. Although other alternatives are possible, oscillation at N/Rev
has the advantage of keeping all the blades "in track”. That is, if the
pitch of an N-bladed rotor is oscillated at N/Rev, then every blade will
experience the same aerodynamic loading going around the azimuth. This is
desirable, as it tends to aerodynamically balance the rotor (McCloud and Biggers

1978)..

Higher harmonic pitch oscillation at N/Rev in the fixed system al-
lows for six control degrees of freedom. Figure 3 defines the angle
¥ made by the reference blade and the tail of the helicopter.  With
respect to this reference, the magnitude and phase of collective, lateral,
and longitudinal cyclic pitch motion at N/Rev frequency may be specified.
These degrees of freedom are also shown in figure 3. However, in-
stead of presenting the components as magnitude and phase, the rela-

tion,

ACos{NY + ¢) = C1 Cos(N¥) + CaSin(N¥)

will be used to form an expression using sine and cosine coefficients. Hence the
control vector, ©, consists of the sine and cosine Fourier coefficients of collective,

lateral, and longitudinal higher harmonic motion at N/Rev,

14



—éC’,Lan Longitudinal, Cosine
05, Lon Longitudinal, Sine
bc,col Collective, Cosine

6 = bs,cotl Collective, Sine

fc Lat Lateral, Cosine

0s Lat Lateral, Sine

and will always be a (6z1) vector.

{Rotor Disk)

Swashplate
Actuators
A, B, &C 270°

360°

4/Rev Collective R
Phase 0° .

4/Rev Lateral B
Phase 0°

4/Rev Longitudinal B
Phase 0° i

»

Figure 3: Exanple of N/Rev Collective, Lateral, and Longitudinal Pitch
Controls for N=4.
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3.2

MEASURED N/REV VIBRATION

The measured vibration vectdr, Z, represents the quantity to be minimized. It
is formed by processing signals from accelerometers placed at various locations on
the fuselage. By orienting the accelerometers in different spatial directions, vibra-
tion forces on all three axes may be sensed. The signal from each accelerometer
may be represented as a Fourier series, using one rotor revolution as the fundamen-

tal period, as,

Z = 29 + 21cCos(¥) + 215 Sin(¥) + 29,C05(2W) + 295 Sin(2¥) + 23.Cos(3¥)

235 SIn(3W) + 24.Co05(4¥) + 245 Sin(4V) + 25.Cos(5¥) + 255 Sin(5¥)...

If the vibration signal from the accelerometers is processed by a Fast Fourier
Transform (FFT) algorithm, the N/Rev coefficients may be used to form the
vibration vector. The vibration measurement vector will therefore be defined as a
(2n x 1) vector whose elements are the N/Rev Fourier sine and cosine coeflicients

of the "n” accelerometers (figure 4).

The dimension of the vibration vector is thus proportional to the number of
accelerometers used. Since only six controls have been proposed, it is obvious
that good control of the (2n x 1) Z vector can only be attained by restricting
n. The choice of n is a compromise between good vibration control at a few
areas, or less vibration control at more areas. The number of locations in which
vibration may be controlled well is dependent upon the structural constraints

imposed by the fuselage between the accelerometers. If no constraints existed

16



among the selected accelerometer locations, it would be possible to control

the magnitude and phase of at most three accelerometers, with the (6 x 1)
control vector. Control at a greater number of locations is possible depending
upon the fuselage constraints. With three appropriately placed accelerometers,

it may be possible to alleviate the N/Rev vibration throughout the entire

fuselage.
Helicopter
Accelerometer
. - -
Signals Sin 49
Cos 4T

Figure 4: Formation of the (2n x 1) Vibration Measurement Vector from
"n" Accelerometers on the Helicopter Fuselage
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3.3

INVERSE VIBRATION CONTROL USING
LINEAR FREQUENCY DOMAIN MODELS

The higher harmonic fuselage vibration can be thought of as aris-
ing from two sources: 1) the aerodynamic interaction of the rotating
N blades with the airflow, and, 2) the N/Rev cyclic pitch control in-
put. The objective is to use the latter to cancel the former. To do
so requires a mathematical model of the relationship between the higher
harmonics of sensed vibration and the higher harmonics of pitch con-

trol.

Vibration control by inverse modeling requires that this relationship be

linear. Linear models which describe the system may be of the global
type,

Z(k) = [T|6(k) + Zo
where the vibration harmonics, Z, are linearly related to the pitch har-
monics, ©, about the vibration level Z where © equals zero. However,

for adaptive inverse control, it is more useful to use a local model of the

form,
AZ(k) = [T|A6(k)

where,

AZ(k) = Z(k) — Z(k — 1)
A6(k) = O(k) — 8(k — 1)

18



in which small changes in the N/Rev coefficients of vibration, AZ, are liﬁearly
related to small changes in the N/Rev coefficients of cyclic pitch, A©, about
a local control point. Here AZ(k) is a column vector whose elements represent
the difference in the sine and cosine Fourier coefficients between two successive
steps. Similarly, A©(k)is a column vector whose elements represent the difference
in the N/Rev sine and cosine Fourier coefficients from one step to the next.
T is the postulated transfer matrix which relates the changes in the higher
harmaonics of vibration to the changes in the higher harmonics of cyclic pitch

control.

The idea behind adaptive inverse control is to make the controller
matrix be the local inverse of the helicopter (plant) transfer function.
The inverse control feedback loop may be modeled as in figure 5, where
C denotes the inverse of the helicopter transfer matrix, T. From this
figure, it is seen that the total sensed vibration level, Z, is fed into
the inverse controller matrix. This is done to generate a corresponding
change in the higher harmonic pitch to alleviate the total semsed vibration.

Or,

*

A = _[C]Zmea.sured (1)

The change in higher harmonic pitch necessary to alleviate the sensed vibration
15 produced by simply changing the sign on the sensed vibration. Notc that the
A6" vector has an asterisk superscript to distinguish it as a commanded change
in higher harmonic pitch based on an imperfect estimate of the inverse matrix,

C.
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This approach has been used by previous researchers to implement in-
verse control by inverting a transfer matrix identified at a particular flight
condition. ~ However, the T matrix identified at one flight condition is
generally not representative of the T matrix identified at another flight con-
dition. As a result, good control may be achieved at omne flight condi-
tion, but not at others. Because the T matrix is apparently not constant
throughout the flight envelope, it is necessary to identify the local inverse
transfer matrix adaptively. Adaptive inverse control, as presented here, thus
refers to identifying the locally linear inverse at the current operating condi-
tions. In the next section, the extension of the LMS algorithm to handle the
problem of adaptively identifying the local inverse transfer matrix will be dis-

cussed.

C T
- {n X m) {m X n) z
CONTROLLER HELICOPTER |{m X 1)
COPY PLANT
+
&
> ZELIGHT
{m X 1)
L Az
{m X 1)

Figure 5: An Inverse Controller, Where C is the Inverse of T.
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IV. LMS ADAPTIVE INVERSE CONTROL OF HELICOPTER N/REV VIBRATION

As mentioned previously, it is necessary to adaptively identify the local
helicopter transfer function inverse in order for inverse control to work in all flight
regimes. In this section, the LMS algorithm is extended to the multiple-input,
multiple-output form and applied to the helicopter vibration control problem. The
convergence and stability analysis of this formulation will be discussed in the next

section.

4.1

FORMATION OF LMS ADAPTIVE INVERSE
IDENTIFICATION ERROR VECTOR

The LMS algorithm has been extended to exploit the differences between
the actual and estimated changes in the higher harmonic blade pitch FFT
N/Rev coefficients. The estimated change in higher harmonic pitch is com-
puted using the inverse estimate as in equation 1. Hence, these differences
may be used to form an error vector which can be used to adaptively iden-
tify the inverse transfer matrix. The error vector formation is shown in
figure 6. Note that the controller has been placed downstream of the plant

for the express purpose of forming this error vector. Referring to figure

6,
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Adaptation Error Vector = A6 — A6°
e= A6 —[ClAZ
e= A0 — [C][T]|A6
Here A© is the change in N/Rev blade pitch, which produces a corresponding
change in vibration, AZ. When this AZ is multiplied by the controller matrix,
C, the change in blade pitch would be reproduced exactly, if C were the exact in-
verse of T. However, this calculated change in pitch is usually not quite the same

as the original change in blade pitch due to identification errors in the inverse

matrix, C.
— DELAY
T
A —d {m X n) |_AZ (n X m) | Af
(nX1) HELICOPTER |(m x 1) | CONTROLLER | {n X 1)
PLANT

Figure 6: Formation of the Adaptation Error Vector Used by the
Extended LMS Algorithm to Identify and Track the Inverse
Matrix, C.
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4.2

TRACKING THE INVERSE ESTIMATE
WITH THE EXTENDED LMS ALGORITHM

The extended LMS algorithm is an iterative technique which uses
the method of steepest descent to update the estimate of the inverse
p]apt transfer function. The form of the equations presented here basi-
cally follows and extends the single-input, single-output LMS algorithm
work of Widrow and Hoff. The stability gain term has been made
into a diagonal matrix, as has the gradient, in order to extend the
LMS algorithm to solve the multiple-input, multiple-output vibration control

problem.

The extended LMS algorithm identifies and tracks the local inverse transfer
function by making corrections to the inverse estimate which are proportional
to the gradient of the error vector squared, with respect to the inverse matrix
elements. In steepest descent form, the equation for updating the estimate of the
inverse may be written as:

de?

OC(k)) (2)

C(k+1)=C(k) — Ks(

To understand the form of the equation, it is helpful to think about correcting
only one value of the inverse matrix. If the square of the error of element Ci g
is plotted as a function of the C;; estimate, a plot such as that shown in figure
7 may be made. For this case, the gradient has degenerated to the slope of the
error squared line. It is seen that for two successive estimates of C;j, that if

the square error increases with increases in Cjj, then the update to correct the

23



estimate must be negative. This is why the correction term is preceded by a minus
sign in equation 2. K is a gain term which governs the amount of correction
to be made. If K; is made too large, convergence to the minimum may not

occur.

Identification

Error . Error(k+l)

in
C..

1]
........ Error(k)

P ——

(correction k+2)

c'ij

Figure 7: Steepest Descent Approach for Estimation of only one
parameter, cij .
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The extension of the LMS algorithm to the n» dimensional case is made by
finding an estimate of the error vector squared with respect to the current value

of the inverse estimate. An estimate is needed for the gradient of the square error,
or,
de2
aC(k)
where the error vector squared has been defined as

2
e = | %,eg,eg,..,ei]

By defining the error vector in this fashion, an error is associated with each row

of the inverse estimate. Hence for each row 7 of the inverse C' matrix, the square
error may be expressed as,

e? = (es)(el)
e =(a0; —cTazTyae; — AZC))

e} =(A0;40; — A6;AZC; — cTazTae; +cTazTaze)  (3)

where e; is the scalar error term associated with the i** row of the in-

verse matrix, C7. Note that AZT is a column vector, and that A®; is a
scalar.

An approximation of the gradient of the error squared for the ¢** row may

then be found by differentiating the 7*» error squared (equation 3) with respect to
the i*h row of the C matrix, CT, as follows:

2
:—;,- =—AzZTA6; — AZTA0; + AZTAZC; +AZT AZC;
1

= —2A2TA0; +2A2TAZC;
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= —2A2T(A6; — AZC))

and thus,
Oe?
act
This expression is used by the extended LMS algorithm as an estimate of the

= —2AZ(a6; —cTazT) (4)

gradient of the square error for the 7*» row of the inverse matrix. It is an
approximation because it does not account for measurement errors in Z, or

identification errors in C.

Using the row error squared gradient estimate provided by Equation 4, in
the steepest descent equation 2, the extended LMS inverse update equation is

formed:
CT(k+1)=CT (k) + 2k AZ(k)(A0i(k) — CT (k) AZT (k) (5)

It is this equation that adaptively identifies and tracks the estimate of the
inverse matrix. It has been presented in a row by row fashion to assist the
reader in seeing that it applies to square and nonsquare plant transfer matrices

alike.
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4.3

ADAPTIVE INVERSE CONTROL OF HELICOPTER VIBRATION

When the controller update equation (5) is combined with the inverse
control law (1), the adaptive inverse control scheme is realized. These
two relations form the estimator and controller of the adaptive inverse

regulator:
CcT(k+1)= CT (k) + 2k AZ(k)AGi (k) — CT (K)AZT (k)
as the inverse estimate update equation, ;and
ek +1) = ©(k) + A0"

or,
6(/: + 1) = Q(k) — Kcr C(k)Zmea.sured

for the inverse control law. Here, K¢g is a gain chosen between zero and one. It is
termed the controlrelazation constant, and is useful in modifying the convergence

characteristics of the extended LMS algorithm.

These feedback loops are shown in figure 8. Note that the inverse matrix,
C, has been shown in two places for conceptual purposes. In the top loop,
the C (inverse) matrix has been placed downstream of the T transfer matrix
(helicopter) for the purpose of generating the extended LMS error vector.
The LMS — SD box represents the extended LMS estimator, which uses
the error vector information to track and identify the inverse matrix, C.

The bottom loop shows another C' matrix placed upstream of the helicopter
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to serve as the controller matrix for the inverse control law.

In actual

implementation, though, only one inverse (C') matrix would be held in computer

Inemory.

C
{n Xm)

COoPY

> CONTROLLER

Az

{m X 1)

Figure 8:

Estimator with the Inverse Control Law.
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From figure 8:, the adaptlve i:m?ei'sre control Vtechﬁique éequence of events
can be seen. First, a change in the higher harmonic pitch vector, A® is fed
into the helicopter. This should produce a change in the measured vibration
vector, AZ. If this change in N/Rev vibration is postmultiplied into the inverse
estimate matrix, the original change in higher harmonic pitch should be produced,
provided C is the inverse of T, in the least squares sense. The original (A®)
and calculated (AG*) higher harmonic pitch commands are compared, and the
error vector for the extended LMS algorithm is generated. The extended LMS
algorithm is then applied to update the estimate of the inverse matrix. After
the updated inverse estimate is obtained, the total sensed vibration vector,
Zmeasured, 15 postmultiplied into the inverse estimate. This should then form
the negative of the change in higher harmonic pitch necessary to alleviate the
measured vibration. The new control is applied to the rotor, and the cycle

repeated.

The question of how the adaptive inverse control technique should be started
will be addressed in the next section, after some analysis of the method has been

presented.
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V. ANALYSIS OF ADAPTIVE INVERSE CONTROL

Analysis of the adaptive inverse control technique is centered on the
identification characteristics of the extended LMS algorithm. The reason for this
is that if convergence to the inverse can be achieved, then the inverse contrel
law ',(by definition) will reduce the vibration, providing the control authority is
not exceeded. Hence, aside from selecting the amount of control relaxation, the
extended LMS algorithm convergence characteristics are governed by the selec-
tion of K. It is shown that the stability ranges for the elements of K are, in
part, determined by the eigenvalues of the signal information matrix. The eigen-
values of the signal information matrix will, in turn, be related to the dynamics
of the helicopter. Lastly, the learning characteristics of the algorithm are dis-
cussed as functions of the starting estimate of the inverse, and the elements of

K.
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5.1

CONDITIONS FOR CONVERGENCE TO THE INVERSE

The analysis of the multiple-input, multiple-output adaptive inverse control
technique presented here involves determining the stability properties of the ex-
tended LMS estimator. In this section, considerations governing the selection of
the, K¢ elements will be discussed. The learning properties associated with the

extended LMS algorithm convergence characteristics will be discussed in the next

section.

Analysis of the stability properties of the extended LMS estimator

proceeds with the controller update equation for the ith row of the controller
matrix:

Tk +1)=CT(k) + 2(k:)AZ(AO; — cT(k)azT)

Recalling that

C?(k)AZT = (row)(col) = scalar,

the above equation may be written as,
cT(k+1) = CT(k)+ 2(ki)AZAO; — ok;)CT (k)aZT AZ
Then taking the expected value of both sides,

E[CT (k4 1)] = E[CT (k)] + 2(k:))E[AZAO4] — ok E[CT (K)EIAZT AZ)

Defining

E[AZAO{] = Sz
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and,
E[AZTAZ) =8,

the equation may be rewritten as
EIC] (k + D] = E[CT ()] + 2(k)Sz0 — 2(k)EICT (k)1S:,2
Or,

E[CT (k4 1) = E[CT (k)] — Sz,22k:] + 2ki S0

From this equation it can be seen that as long as the eigenvalues of
[I -_ Sz’z 2/{71]

are less than 1, the algorithm is stable. Alternatively, it is possible to decompose

the signal information matrix into modal form by letting
Szz = RTIAR

where R is a matrix whose columns are the eigenvectors of Szz, and
A is a diagonal matrix, whose elements are the eigenvalues of the Sz,z

matrix.

Hence for stable convergence, it is necessary to select the elements of the

stability gain matrix, k;, so that the eigenvalues of,
(I — S;,2k;] are <1

Thus, the stability range for the K gain elements are

1

)\maz

0<k <
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where Amgqz is the largest eigenvalue of the signal information matrix.

The signal information matrix is almost a diagonal matrix, so the upper limit
specified by X_,,;IZ may be replaced by roughly W of the largest mean

signal of the measurement vector.

In the simulations, the effect of varying K is studied. Values of Kj
near )\—ml;—; will adapt rapidly, but will be more prone to tracking random
noise after "convergence” has been achieved, and will tend to oscillate about
the correct solution. A good value of K is one which results in con-
vergence at a sufficiently rapid rate, yet does not track noise signals too

closely.

The stability bound on K predicted by Tml‘?; is really not a known
quantity, since the signal information matrix is, in general, not known.

From
E[aZT AZ) = E[(TA®)T (TAO)]

it is seen that the signal information matrix depends upon the local trans-
fer matrix, T, as well as the applied multicyclic pitch control, A®, and
any control relaxation used. Hence, the actual values for the K ele-
ments ‘which allow for sufficiently fast and stable inverse ideutification must
be found with some trial and error. The (6 x 6) simulation results
will make this point clear, when the effects of control relaxation are ex-

amined.
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5.2

CONVERGENCE PROPERTIES OF THE EXTENDED LMS ESTIMATOR

In the preceding section, the values of K which lead to stable con-
vergence to an inverse estimate were found. In this section more is said
about the solution to which the algorithm converges, and how fast it does
so. By analyzing the controller update equation in modal form, it is
possible to describe the convergence process in terms of learning curve
modes, as that done for single-input, single-output systems by Widrow
(1970).

Recall from the last section that for row ¢ of the inverse update equation

that
E[CT (k- 1)] = E[CT(k)]l] — S2,22ks] + 2ki Sz,

To study the convergence and learning properties, it is necessary to express'the
effect of initial conditions on the inverse, as well as the value of the stability
gain matrix, K. Letting C(0) denote the initial estimate of the inverse,

and
A= [I - Sz,z Qki]

B - 21:,53’9
Then,

E[cT(1)] = E[C] (0)][4] + B

elcT(2) = Elc] (VA + B

E[cT(3) = E[c] (2Nl + B
E[CT(n+1)] = E[CT(n)[A] + B
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And by substitution, a relationship between the initial inverse estimate, the

stability gain matrix, and convergence may be derived.

E[cT(3) = (E[cT()|lA] + B)A| + B

E[cT3)] = ((cT(0)[A] + B)+ B)[A] + B

E[c](3)] = (cT(0)[A]* + BA+ B)|A| + B

E[cT(3)] = CT(0)lA® + B[A® + B[A] + B
2

Elc @) =cT)4aP + Y BlA™

n=0

Or, generalizing this expression,

k
Elc] (k4 1)] = cTOA*T + 3" Bla®

n=0

And resubstituting for A and B,

k
E[CT(k+ 1) = CT(0)I — S, 2k:]* T -+ D 2kiS5p[ — Sy zk]™  (6)

n=0

The assumption is now made that the Xz elements have been selected small
enough so that the diagonal elements of the [/ — S; ,2k;] matrix are all less
than one. Then as j approaches infinity, the first term of equation 6 will go to

Z€ero.

To see that the second term will converge, in the limit, to the same
estimate as that found by the least square error method, it is neces-
oary to place the second term in modal form.  This is dome by let-
ting

Sz,z = RTIAR
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where R is a matrix whose columns are the eigenvectors of Sz z, and A is a diagonal
matrix, whose elements are the eigenvalues of the Sz,z matrix. Rewriting the

second term of equation 6 with this nomenclature, and recalling that the first
term went to zero,

k
E[CT(k+ 1] = ) 2kiSzpll — RT'ARI"

n=>0

k
=2k ) Szoll— R™'AR]

n=>0

and thus for each row,

k
E[CT(k+1)] = 2k:R™1 Y (1 — 2k:0:)" RS 5

n=>_
T g G — R
1— (1 — 2ki)s) ’
= 2k; R . )RSz,
2kiNg ’
=R IATIRS,
=S5 ;520

= E[aZT AZ]T1E[AZA8;)

which is the same as that found by ordinary least squares, because if
Ae; =cTaz”
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where C7 is the i*# row of the inverse matrix, then
e} =(ea)el)

el =(a0; — cTazT)yae; — AZC))

and,
de2
acT

= (46;46; — A0;AZT — A6;AZT +202A27 C)

=—246,A2T +2A2A27 ¢

Setting the partial derivative equal to zero, the normal equations,
A0;AZT = AZAZT ¢;
are found, and hence,
C; =[azazT|lae;azT
Taking expectations,
E[C{] = E[AZTAZ] T E[AZA6;]

which is in exact agreement with the expected estimate of the extended LMS
steepest descent approach. Hence, the extended LMS algorithm converges to the

correct estimate of the inverse in the least squares sense.

The modal analysis also permits the rate of convergence to be ex-

pressed in terms of normal modes. That is, for an n dimensionzl matrix,
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n geometric modes may be associated with the eigenvalues of the signal in-
formation matrix S;,. Letting p; denote the geometric ratio of the §th

mode,
s = (14 2kiNg)

and assuming an exponential decay, it is possible to associate an adaptation or

learning curve time constant, 7;, with this mode. Hence,

;= eX ——1
PDi = €Xp T
or
1 1
C=] - — _
pi 5 + (275 7)

And equating these two expressions, an approximate learning curve time constant

for the :*» mode may be expressed as

1
T 2kiNg

Ts

The exponential decay associated with this adaptation time constant is designated
as the ”learning curve” for the it normal mode. If all eigenvalues of Sz,z
were the same, a single learning curve could be defined for the entire inverse
matrix. In the more general case, however, the eigenvalues will not be
equal. Then the overall learning curve will be a function of all of the
eigenvalues corresponding to the various normal modes. It is expected that
the faster modes will therefore produce rapid initial learning, whereas the
slower modes will govern final convergence, since they will take longer to die

out.
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5.3

STARTING ADAPTIVE INVERSE CONTROL

A method for iteratively correcting the estimate of the helicopter inverse
transfer matrix has been presented without regard as to how the algorithm should
be started. That is, the initial conditions on the inverse matrix need to be

specified.

The effect of the initial estimate of the Cg' (0) matrix was seen to be negligible
as the number of iterations approached infinity, since the first term in equation

6,
CT(O)I — 8z 702K} T1

approat¢hed zero in the limit. However, the choice of the intial C(0) matrix is

important if the transient behavior is to be considered.

One method of selecting a starting estimate for the inverse would be to
apply an off-line least square estimation algorithm to some input and out-
put data taken mear the expected mean operating condition. The identified
matrix could then be used as the initial estimate for the C(0) matrix. This
approach, however, has the significant drawback that each helicopter has a
slightly different flight regime, which requires a different starting estimate.
Futhermore, it would make a difference whether the vibration control algorithm

was started on the ground, in hover, or in a variety of forward flight condi-

tions.

A more comprehensive method, although more complex to implement, in-

volves determining the starting estimate during imitial flight. In this ap-
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proach, an initial identification phase, termed the learning phase, would
be used to identify the starting inverse estimate in an open-loop fashion.
During the learning phase, the blade pitch could be given small perturba-
tions in higher harmonic pitch, and the corresponding small changes in vibra-
tion could be semsed. These measurements could then be used by the ex-
tended LMS adaptive inverse control algorithm to correct an initial coarse
estimate of the inverse matrix, obtained from some off-line technique. No
vibration control commands would be generated during the learning phase,
to avoid large transients in control regulting from a poorly identified in-

Verse.

The learning phase would be terminated and the closed-loop operation begun
when the inverse estimate was then ”close enough” for adaptive inverse control.
This end point would be established when the sum of the squares of the adaptation
errors, A©; — AO:, were deemed small enough. At this point, the learning
signal would be discontinued, and the adaptive inverse control loop would be
closed. The LMS algorithm would then update the estimate of the helicopter
inverse transfer matrix to keep up with changes in the helicopter operating

environment.
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VL DISCUSSION OF SIMULATION RESULTS

In order to explore and test the extended LMS adaptive inverse control
method, two basic types of simulation studies were performed. The first study
used a (3 x 3) matrix to represent the helicopter transfer function, whereas
the second simulation runs used a (6 X ?) matrix. The (3 x 3) matrix was
useful, in that, the low order matrig made it easy to examine the convergence
properties of the extended LMS algorithm. The (6 x 6) matrix, on the other
hand, was useful in simulating more realistic control effects such as scaling
and noise rejection capability. Although both simulations involved square plant
transfer matrices, this is not a requirement of the algorithm, since identification
of the inverse transfer matrix is done in a row by row fashion. Square
matrices were selected only because they facilitated calculation of the true

inverse.

The simulation studies model the harmonic vibration-pitch dynamics as a

linear relationship:
Z=[T®+ %

where Z is the vector of N/Rev vibration Fourier coefficients, © is the vec-
tor of the Fourier coefficients of cyclic pitch control, and Zp represents the
vector of the uncontrolled vibration coefficients. The values for the (3 x 3)
T matrix were selected so that the matrix would be symmetric and well con-
ditioned. This was done to avoid mixing the extended LMS algorithm con-

vergence characteristics with those characteristics associated with a transfer
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matrix having bad numerical properties. The transfer matrix was represented

as,
p— -
20 1.0 0.0
T = |10 30 10
LO'O 1.0 2.0—

and 'the uncontrolled vibration harmonics were constant,

1.0]

Zp = |1.0

1.0

ke

The matrix used to represent the (6 x 6) transfer matrix will be presented later.
The (3 x 3) simulation runs were divided into two phases. In the first phase, the
LMS inverse identification, starting from an initial estimate, was accomplished by
introducing perturbations in the cyclic pitch vector, and measuring the associated
changes in the uncontrolled vibration harmonics. This phase of the adaptive ip-

7 7\7rerse control scheme wus referred to as the rLearnz'ng Phase, to distinguish it
from the Control Phase which began when the inverse control loop was closed.

| ;fhe (6 x 6) simulation runs, however, studied only the control phase, Leginning

~ with some initial estimate of the inverse. This was done to avoid duplicating

lédrning»phaéevnzi‘eSﬁIt?s seen in the (3 x 3) simulation, and also to permit a more
“thorough investigation of control phase problems, such as the effects of measure-

" ment noise.
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In most cases, the figures consist of three parts. Part A presents the inverse
identification error and vibration ievel as a function of the iteration number. The
top plot displays the three (or six) uncontrolled vibration levels responding from
three (or six) sinusoidal pitch inputs, and the bottom graph displays the amount
of identification error in the identified inverse over 100 iterations. After iteration
100, the control loop is closed and the inverse control of the vibration is begun.
For all steps (1 - 200), the identification error was found by subtracting the
known true inverse from the identified inverse, squaring the resulting elements,
and adding them all together to form a scalar index for plotting purposes. It
should be noted that for the (3 x 3) T matrix, the vibration signals produced
were imaginary, since the transfer matrix was not derived from actual flight
data. Part B of the figures lists a digital representatioﬁ of the identification
and vibration data. This is useful in cases where it is necessary to distinguish
if the graphical results indicate convergence or very slow divergence from a
given flat region on the gfaph. Part C gives the identified, true, and initial
inverse estimate. This detailed breakdown makes the simulation results discussion
lengthy, but comprehensive. In most cases, though, the reader may skip over
the digital form of the results (i.e., parts B and C) without significant loss of

content.
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6.1

IDENTIFICATION OF THE INVERSE MATRIX
WITH ARBITRARY INITIAL CONDITIONS

One of the nice properties of the extended LMS algorithm is that it is theoreti-
cally capable of ideutifying its own initial conditions prior to closed-loop contrel.
That is, it is possible to start from some arbitrary initial estimate of the inverse,
and correct that estimate through open-loop perturbations in pitch control un-
til it becomes close enough to the true inverse for use with the inverse control

law.

The following set of figures present the simulation results from the (3
x 3) simulation. To simulate convergence (learning) properties during the
learning phase, the initial estimate of the inverse matrix was all zero. The
diagonal elements of K were then varied from 0.01 (Figure 9) to 0.47 (Figure
17). For simplicity of simulation, all elements of the diagonal Iy matrix
were chosen to be the same, and the off-diagonal terms were zero. The
results are presented in order of increasing K values, as summarized by Table
1. When viewing the figures, note the relationship between the magnitude
of the stability gain matrix diagonal elements and the inverse identification
convergence pattern. (Figure 18, page 69, presents a quick examination of this

relationship.)
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Training Phase Runs for the (3x3) Simulation

TABLE 1

Kg Stability Vector Figure
0.01 10 A, B, C
0.10 11 A, B, C
0.15 12 A, B, C
0.20 13 A, B, C
0.30 14 A, B, C
0.35 15 A
0.40 16 A
0.45 17 A, C
0.47 18 A, B, C
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GAIN VECTOR: . 0100 B.0100 6. 0100
CONTROL RELAX:
1 . 0000

Figure 9A Learning Curve with Ks Diagonals = 0.01 for the (3 x 3)
Simulation (Note Learning and Control Phases).
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ITERATION 1.D. ERROR VIBRATION

1 0.00000 9 .00000
- 2 1.27157 2.41634
3 1.25327 4.u44880
Y 1.24@13 6 .68944
5 1.23575 7.99706
5 1.23399 8.37584
7 1.22527 7 .586US
8 1.20869 5.93930
9 1.19360 4.206408
10 1.18571 Y. 17732
15 1.14068 3.16234
208 1.28713 2.72247
25 1.84795 13.06231
30 1.83363 2.60947
35 2.99894 5.80314
40 @.96564 4.13753
45 ©.95062 11.40648
50 ?.94218 2.66334
55 ©.89991 3.68004
60 .86896 2.58204
65 B.84757 7.96703
70 ?.83319 Y. 17401
75 ?.80878 3.16856
&0 0.77829 2.76308
8s ©.76983 13.21733
90 @.76765 2.66917
a5 B.75463 5.81383
120 2.7u4012 3. 00000
105 0.73976 @.35476
118 ©.73968 @.15914
115 @.73967 ?.67123
120 @.73966 ?.23188
125 @.73966 B.81427
130 @.73966 2 .0063%
135 B.73366 J.00286
1u@ B.73966 2.00128
145 B.73956 2 .00057
150 @.73966 2. .00026
155 ?.73966 2.00011
160 3.73966 ?.00005
165 ©.73966 ?.00002
170 @.73965 ?.2000!
175 ©.73966 2. 6oCo0
180 0.73966 . 20200
185 @.73356 2.00000
190 R.73968 0.00029
195 873966 . 00000
200 B.73966 D. 20000

Figure 9B Identification Errors and Vibration Level,
Ks Diagonals = 0.01.
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THE IDENTIFIED INVERSE

.22856 ®.0632 -9.0325%
8.0267 ©.1629 -9 .2091
-0.0640 ®.06298 B8.3476

THE TRUE INVERSE

P.6250 -8.2500 9.1250
-8.2500 B.5000 -0 .2500
9.12608 -D.2500 .6250

INVERSE INITIAL ESTIMATE

0.0000 Q.2000 2 .00008
0.20000Q e.2000 2. 0000
0.00200 Q.2C80809 P.0Q00D

Figure 9C Identified, True, and Initial (3 x 3) Inverse Estimate,
Ks Diagonals = 0.01.
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I NV ER S E I D ENT 1 F I C AT 1T 0O } ERR OR S
——— LEARNING PHASE f CONTROL PHASE
GAIN VECTOR: ®.1000 2.10200 0.1000
— CONTROL RELAX:
1. 00080

Figure 10A Learning Curve with Ks Diagonals = 0.1 for (3 x 3) Simulation
(Note Learning and Control Phases).
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ITERATION I.D. ERROR VIBRATION

1 2. 00000 D .00003

2 @.94165 2.41634
3 2.8099% 4.44880

4 B.79122 6 .60944

s @.78467 7 .997@6

6 B.77161 8.37584
7 9.75002 7 .58645

8 2.74904 5.93930

9 B.73857 4. 00428
10 B.73354 Y4.17732
15 2.56770 3.16234
20 2.36151 2.72247
25 B.32730 13.86231
30 .31325 2.603%47
35 B.30758 5.80914
4o D.30427 4.13753
us B.29251 11.49648
58 2.268023 2.66334
55 B.17646 3.68004
60 Q. 14742 2.58204
65 ?.10206 7.96703
70 @.99967 Y. 1742!
75 B.07356 3.16856
8@ @.25246 2.76308
85 @.24967 13.01733
el .pu787 2.66917
a5 3.24683 5.81383
100 0TBFIRY" 3TVo0Ca"
105 2.24023 a.20180
110 B.24023 [ oluln])
115 @.04023 @. 20000
120 P.o4@23 . 20000
125 B.04023 . 20000
130 e.o4023 Q. 00D
135 2.04023 . 20000
140 B.04023 Q.20000
14s 2.04823 . 80000
150 B.04823 .B2200
155 B.24023 Q. 00000
160 B.24023 0. 20000
165 2.04923 Q.00700
1\7¢ 2.04923 @.002C08
175 .04023 0 .20202
180 B.24023 Q.02200
185 @.04023 ?.00Ced
190 d3.04023 . 20020
195 @.064023 0.20200
200 ©.04223 @ . 0020D

Figure 10B Identification Errors and Vibration Level,
Ks Diagonals = 0.1.
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THE IDENTIFIED INVERSE

?.5563 -0.1683 g .8701
-2.1833 6.4208 -90.1968
@.86616 -0.1746 B.57473

THE TRUE INVERSE

®.6250 -0.2500 8.1250
-8 .2500 @.5000 -0 .2500
6.1250 -0.2500 @.6250

INVERSE INITIAL ESTIMATE

0.00C0 @.0000 o.0000
?.0000 2.0000 ?.0000
2.0000 2.2200 ?.0000

- Figure 10C Identified, True, and Initial (3 x 3) Inverse Lstimate,
Ks Diagonals = 0.1.
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GAIN VECTOR: . 1500 2.1500 2. 1500

CONTROL RELAX:
1.0000

Figure 11A Learning Curve with Ks Diagonals = 0.15 for (3 x 3) Simulation
(Note Learning and Control Phases).
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ITERATION I1.D. ERROP VIBRATION

1 ©.00000 0. 00000
2 2.78830 2.41634
3 2.63340 4.44880
4 2.6288% 6.60944
5 .62253 7 .997186
6 ?.60563 8.37584
7 .58197 7 .68645
8 8.57736 5.93930
] 8.57648 4.00408
10 ©.67222 Y.17732
18 2.33067 3.16234
20 B.290213 2.72247
25 @.18187 13.86231
30 @.16763 2.60947
35 D.16670 5.80914
4o 2.16378 4.13763
us 2.15573 11.486u48
50 @.13704 2.66334
55 B.87512 3.68004
62 O .06048 2.58204
65 B.03525 7.96703
70 @.03456 4. 17401
75 @.01902 3.16856
80 @.21306 2.76308
85 2.81137 13.01733
T} B.21057 2.66917
g5 0.01050 5.81383
108 2.272935 3.00000
105 B.20735 @ .00008
118 B.08795 2. 00020
115 D.20795 @ .00000
120 2.20795 0 .00020
125 2.29795 2 .02000
130 2.2a795 @.00000
135 @.0879% ©.00000
140 2.00795 B.0000B
145 @.08735 B.00000
150 @.09795 B .00000
1655 2.0e735 ?.20200
160 2.88795 2.00000
165 B.00735 2 .00000
170 2.087395S ?.00002
175 2.ee795 2.00000
180 B 20795 2.00020
185 20735 2 .00000
180 @.00795 2 .00002
185 @.00795 @ D22
200 2.092795 2. 02200

Figure 11B Identification Errors and Vibration Level,
Ks Diagonals = 0.15.
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THE IDENTIFIED INVERSE

0.6028 -8.20985 8.1804
-9.2265 2.4607 -@9.2261
0.1025 -B.2124 B.6021

THE TRUE INVERSE

®.6250 -9 .2500 ®.1250
-0.2500 P.5000 -9 . 2500
@.1250 -@.2500 ?.6250

INVERSE INITIAL ESTIMATE

o.0000 6.0000 B .0000
P . BB0O0O D.0000 9. .00020
9.0000 @.0000 0.0200

Figure 11C Identified, True, and Initial (3 x 3) Inverse LEstimate,
Ks Diagonals = 0.15.
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Figure 12A  Learning Curve with Ks Diagonals = 0.2 for (3 x 3) Simulation
(Note Learning and Control Phases).

55




ITERATION 1.D. ERROP VIBRATION

1 0.20003 2 .00000 -
2 @.65634 2.41634
3 2.60652 4.44880
Yy ?.49325 6.60944 -
5 ?.48798 7 .99706
& 5.46850 8.37584
7 £.43972 7 .686L5
8 ?.43746 5.93939
9 0.u3640 Y. 00408
10 2.43350 4. 17732
15 0.26057 3.16234
20 @.1@964 2.72247 .
25 2.09593 13.06231 . i
30 @.08587 2.80947 ) !
35 @.08489 5.8091y |
u@ 2.08321 Y.13753
us 2.07819 11.49648
5@ @.06528 2.66334
55 .03833 3.68004
60 . @234y 2.58284
65 ©0.01208 7.96703
70 2.21189 Y. 17401
75 0 .00452 3.16866 ;
80 @.00317 2.76308 :
85 0.00251 13.81733 v
ap ©.00224 2.66917 i
o5 @.00222 5.81383 i
100 ?.00195 3.00000 g
105 ?.00151 ?.000008 -
10 0.00151 D . 00000
118 0.08151 0.00000 ; .
120 0.0¢151 ?. 00000 t :
125 @.00151 ?.00000
130 0.20151 0.00000
135 0.06151 D.0c002 :
142 0.00151 ?. 00003 )
us @.0015! ?.00000
150 0.9215! ?.00200
155 ?.0815) @ . 00000
160 2.00151 0 .00000
165 8.08151 @ . 00000
170 ©.00151 0 . 00000
175 2.02151 2 .00200
180 2.00151 @ .00200
185 ?.00151 2.00020
199 2.00151 2 .00000
195 2.00151 2 .00000 ' .
200 ©.08151 @ .000C0

Figure 12B Identification Errors and Vibration Level,
Ks Diagonals = 0.2.
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THE IDFNTIFIED INVERSE

?.6191 ~9.2386 p.1147
~@.2442 8.48089 ~-2.2398
2.1193 -8.2312 8.6150

THE TRUE INVERSE

B.6260 -0.2500 0.1250
~-0.250 ?®.5000 -8.2500
P.1250 -9 .2500 ?.6250

INVERSE INITIAL ESTIMATE

6.2000 ®.0000 0. .0000
o.0000 2.00020 2.0000Q
0.0000 P.0000 0 .0000

Figure 12C Identified, True, and Initial (3 x 3) Inverse Estimate,
Ks Diagonals = 0.2.

57



10

-1@

N N N N N (N A T M A D I I A O O R
S € N S E D \2 I B R A T 1 0 N
! L] | [
50 100 ' 160 200

I NV FR S E -1 DENT 11 F I C A T 1 ON E R R 0O R S
1
I

——— LEARNING _PHOASE CONTROL PHASE ——of

GAIN VECTOR: 5. 3000 ®.3000 @ .3000
CONTROL RELAX:
1.0000

Figure 13A Learning Curve with Ks Diagonals =-0.3 for (3 x 3) Simulation
(Note Learning and Control Phases).
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Figure 13B

LTERATION 1.D. ERROR
1 @ . 00000
2 @.45657
3 0.48161
4 @.31746
5 2.30090
6 @.27725
7 @.22549
8 ©.22529
-} P.22546
1@ 0.22430
15 @.10265
20 0.02622
25 0.082252
30 @.01812
35 0.061766
uo 8.01743
us ?.01604
50 ?.813u6
55 0.00261
60 ?.00136
65 ?.00088
70 ?.00078
75 0.000108
80 2.00008
85 2.00006
=Y. @ .00005
a5 2.00024
100 3. 00205
185 0 . CooY
110 0.00004
1185 0.26204
120 ?.00004
125 0.00004
130 ?.00004%
135 3. 00C34
140 3.C0004
45 ?. 00004
150 2.00004
155 @ . 00304
160 2. 00004
165 0. 00004
170 0.00204
175 2. 20004
180 ?.C0004
185 ?.00024
190 0 .00204
195 @.coz04
200 0.c0004
Identification Errors

and Vibration Level, Ks Diagonals = 0.2.

59

IBRATION

v

FFfFaNoNOOENOLE

—

-

0D WANONWENNONN~FTANDON R

. oo
41634
.LLase
.6DS4Y
. 99706
. 37584
.58645
.93930
. o248
7732

. 16234
72247
.86231
.67
.8091y
.13753
.4asu8

66334

. 68004
.68204

96703

7481
. 16856
.76308
21733
66817
.81333
. 02000
. 00002
.Boo0d
. 00200
.00022
. 6000
. P00
. 300
. 20000
. 0020
. 000D
00683
. 0030
. 00000
. 00200
. 0B
. 00200
.@o000
. 00080
.002e
. 0OCo0




THE IDENTIFIED INVERSE

@.6262 -B8.2471 a.1241
-80.2513 B.4968 -@.2491
9.1266 -0.2463 B.523¢

THE TRUE INVERSE

D.6250 -0.2500 2.1250
-0.2508 @.5000 -2.2500
9.1250 -0 .2500 B.6250

INVERSE INITIAL ESTIMATE

. 0000 0.0000 B.0000
¢.0000 0.0000 e.20800
0.0000 0.20000 @.0000

Ks Diagonals = 0.3.
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1.0000
Figure 14 Learning Curve with Ks Diagonals = 0.35 for (3 x 3) Simulation

(Note Learning and Control Phases).
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CONTROL RELAX:

1.0000

Figure 15 Learning Curve with Ks Diagonals = 0.40 for (3 x 3) Simulation
(Note Learning and Control Phases).
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Figure 16A Learning Curve with Ks Diagonals = 0.45 for (3 x 3) Simulation
(Note Learning and Control Phases).
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THE IDENTIFIED INVERSE

.656143 -8 .3477 2.1107
-0 .2607 B.4906 -90.2514
B.1561 -0.2236 @.6289

THE TRUE INVERSE

?.6250 -0.2500 ¢.1250
-0 .2500 0.50e20 -8 .2600
B.1250 -8 .2500 B.6250

INVERSE INIT!AL ESTIMATE

0.0000 ©.0000 Zg.00002
6.00Q000 0. 0000 ©.0000
©.00800 0.0000 @.0000

Figure 16C Identified, True, and Initial (3 x 3) Inverse Estimate,
Ks Diagonals = 0.45.
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Figure 1TA Learning Curve with Ks Diagonals = 0.47 for (3 x 3) Simulation
(Note Learning and Control Phases).
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ITERATION I.0. ERROR VIBRATION

1 @.00200 @ . 00000

2 8.31329 2.41634
3 ©.67837 Y.44880
Y4 1.17067 6.60944
5 B.24943 7 .99706

6 . 20252 8.37584

7 B.09812 7.58645

8 @.1191y 5.9393p
9 @.20665 4. 00408
10 @.20425 4.17732
15 Q.02433 3.16234
29 @.02356 2.72247
25 1.68514 13.06231
30 18.29409 2.60947
35 1.84530 5.80914
L1%] @.65607 4.13763
45 2.4291%5 11.45648
60 25.00018 2.66334
55 1.18192 3. 68004
60 . 873958 2.58204
65 2.06783 7 .967023
70 2.85677 4. 17401
75 @.00261 3.16856
80 D.20836 2.76308
&85 2.11338 13.01733
o0 2.26291 2.66917
S5 2.03430 5.81383
120 2.08847 3.90000
195 @.28up6 2.37973
110 @.25245 3.32919
115 @.24333 3.79522
120 @ . 24862 4.08815
125 @.2332% 4.29746
130 @.2384%5 4.45848
135 2.237393 4.58840
14Q B.23757 4.69678
145 B.23731 4,78341
150 B.23711 4.87002S
155 @.236G65 4.94140Q
160 2.23683 5.00519
165 ©.23673 5.06282
170 @ 23665 5.11532
175 @.23658 5.16348
182 @.23652 5.20792
185 @ 23546 5.249!6
180 @.23542 5.28769
185 B.23638 5.32359
200 B.23634 5.35739

Figure 17B Identification Errors and Vibration Level,
Ks Diagonals = 0.47.
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THE IDENTIFIED INVERSE

B.259Y4 -@.4454 B.14%16
-P.3162 P.4646 -0.247¢0
8.3383 -2.13560 ?.6153

THE TRUE INVERSE

6.62582 -0.2500 2.1250
-0.2500 0.5000 -D.2500
6.1250 -8.2580 B.6250

INVERSE INITIAL ESTIMATE

?.0C00 0.06Q00 2.0000
®.0000 0.002@ 0. 0000
g.o00020Q ©.0000 8.0000

Figure 17C Identified, True, and Initial (3 x 3) Inverse Estimate,
Ks Diagonals = 0.47.

67




For very low values of K the convergence is smooth, but slow. For higher
values of K, the speed of convergence increases, until it becomes oscillatory
at K; equal 0.40, and unstable for K greater than or equal to about 0.45.
The results are summarized in tabular form below, and graphically in figure
18.

TABLE 2

Convergence Times and Stability Trends for (3 x 3) Simulation
Starting from Zero Initial Conditions on the Inverse Estimate

K¢ ITERATION TO CONVéRGENCE | STABILITY
-0.01 Greater Than 100 Overdamped Convergence
-0.10 Not Quite After 100 Steps Overdamped Convergence
-0.15 100 R Oveédamped Convergence
-0.20 73 Overdamped Convergence
-0.30 - 60 Critical
-0.35 53 S1ightly Underdamped
-0.40 52 7 Largé Oscillations
-0.45 Converged, But Unstable Large Oscillations
-0.50 Will Not Converge Unstable
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Since the learning phase pitch commands were known, it was possible to
compute the signal information matrix. For each iteration, N, of the learning

cycle the learning phase pitch commands were,

O(N, 1) = Sine(N/15.0 + 7.0/15.0)
©(N,2) = Sine(N/20.0)
O(NN, 3) = Sine(N/10.0 — 3.0/30.0)

The signal information matrix, E(AZAZT), was then computed by performing
the indicated multiplication over an appropriate number of cycles. When this was

done, the eigenvalues of this matrix were found to be,

A\ = 0.1734
Ay = 0.9935
A3 = 2.6219

From this information, the theoretical stability limit for the K elements

was,
1 1
= = 0.381
Amaz 2.6219
or,
0 < ks <0.381

which was in good agreement with the experimentally found convergence limit
of about 0.40 . The numbers were not the same because the slower modes had
a stabilizing influence on the fastest mode, upon which the stability criteria was

based.
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More than this, the theoretical learning curves associated with the eigen-
values of the signal information matrix were generated and compared to
the experimental learning inverse error. Recalling that the learning curve
time constants associated with each normal mode and k; are predicted
by:

1
2kiN\p

the normal mode learning time constants are,

Tp —

1
= (0347Vks;
1
2 (1.987)ks2
IS S
7 (5.244)ks3

Table 3 compares the identification error associated with each mode assuming
that the initial inverse estimate square error was 1.31, and that the K diagonal
elements were all equzl to 0.15. From this table, it is seen that the experimentally
found learning curve appears to be an average of the learning curves associated
with the normal modes. The faster modes can be viewed as being responsible
for rapid initial learning, while the slow modes govern final convergence. These
modes have been roughly indicated in Figure 19. It appears that the best

selection of the K elements is, therefore, a compromise between stabie c¢nd fast

convergence.
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TABLE 3

Comparison of Experimental and Normal Mode
Predicted Learning (Identification) Error

STEP T1 = 20 T2 = 3.5 73 = 1.5 AVERAGE EXPERIMENTAL
0 1.31 1.31 1.31 1.31 .31
2 1.22 0.77 0.45 0.81 0.74
4 1.15 0.66 0.11 0.64 0.73
20 0.49 0.02 0.00 0.17 0.24
40 0.18 0.00 0.00 0.06 0.20
60 0.07 0.00 0.00 0.02 0.07
80 0.02 0.00 0.00 0.01 0.02
100 0.01 0.00 0.00 0.00 0.01
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- kg =-0.30
1.5} 2 1 o
T={1 3 1
b 0 1 2
E(azazT)
! 0.17
1.0¢ A =099
2.62
SUM SQUARE r FAST MODE -040<k;< 0
IDENTIFICATION
ERRORS IN C
5B r MODERATE MODE
7 SLOW MODE
0 50 100
NUMBER OF ITERATIONS
h Figure 19,

The Learning Curve of the Adaptation
Process Showing Convergence Modes for
. the (3 x 3) Simulation with Kg=0.30
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6.2

ADAPTIVE INVERSE CONTROL SIMULATION
WITH THE (3 X 3) T MATRIX

Once the inverse matrix identification error is small enough, the vibration
control phase may be initivted by using the inverse matrix to gencrate vibration
contral commands. For the (3 x 3) simulation, this was done after 100 iterations.
This section presents five plots to show the behavior of the (3 x 3) simulation
during the control phase. The K diagonal elements were chosen to be 0.30, since
this value produced the most rapid convergence without oscillations or instabilities
about the true solution. For these simulation runs, the uncontrolled vibration
vector elements were held constant at 1.0, after the start of the control phase.
This simulation represented the simplest case, in which the vibraticn vector to
be minimized was held constant. Figure 20 shows the uncontrolled vibration
levels, for no control (or, control relaxation set to zero). Note that control
relazation refers to that fraction of the inverse control actually implemented,
expressed as a number between zero and one. Figure 21 shows that, even for
control relaxation of 0.6, the vibration decreases to near zero in two or three

iterations.
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Figure 20A Uncontrolled Vibration for No Control During the Control
Phase, Ks Diagonals = 0.30.
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ITERATION I.D. ERROR VIBRATION

1 0 .20000 . BodeR
2 @.45657 2.41634
3 2.40161 4.454880
Y B.31746 6.60944
5 0 .30090 7.99706
6 ©.27725 8.37584
7 ©.22549 7 .58645
8 B8.22529 5.93933
9 2.22546 4. 00408
18 6.22430 Y.17732
16 2.10265 3.16234
20 ?.02622 2.722u47
25 B.02252 13.06231
30 ?.01812 2.60947
35 ?.81766 5.80914
42 0.81743 4.13753
us ?.01604 11.49648
50 .B1346 2.6633y4
55 ?.00261 3.68004%
(7] 0.00136 2.58204
65 2.00088 7 .96703
78 ©.00078 Y. 17401
75 ?.00010 3.16856
88 0.00008 2.76308
85 2.20006 13.81733
o0 2.00005 2.66917
a5 ?.Co0004 5.81383
100 B . 90005 3. 00000
105 0 .00005 3.000008
110 ©.00005 3. 00000
115 @.20005 3. 00000
120 . 00005 3.00200
125 2. 00005 3.00000
130 B . 00005 3.00000
135 2.00005 3.00000
140 7 .00005 3.00000
145 0 .02205 3.00000
150 .0e0S 3.00000
165 ?.20005 3.00000
160 ?.00005 3. 00008
165 2.00005 3.00002
170 2 .00005 3.00000
175 ?.00205 3.00000
180 0.02005 3.00020
185 Q. 20005 3.00000
190 . 02005 3.00000
195 . 2003 3.00000
200 B.200rs 3. 00000

Figure 20B Identification Errors and Vibration Level for No Control
Ks Diagonals = 0.30.
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Figure 21A. Steady State Vibration Reduction in the Control
Phase (beginning step 100)
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ITERATION I1.D. ERROR VIBRATION

1 0. 00200 2. 00000

2 @.45657 2.41634

3 P.42161 4.44880

4 ?.317u6 6.60944

5 0.30090 7.99726

6 8.27725 8.37584

7 @.22549 7 .58645

8 0.22529 5.93933

] @.22546 4. 020408
10 2.22430 4.17732
15 2.10265 3.1623Y%
20 9.02622 2.722u7
25 0.02252 13.06231
30 ?.01812 2.60947
35 0.01766 5.8091Y4
4@ ©.8743 4,13753
us ?.01604 11.49648
50 2.61346 2.66334
55 ?.00261 3.68004
60 ?.00135 2.58204
65 D.00088 7.96703
70 2.00078 Y. 17401
75 ?.00610 3.16856
80 0.00008 2.76308
85 2 .00006 13.21733
op 2 .02005 2.66917
95 0.00004 5.81383
100 0. 20005 3.00000
185 ?.00003 B8.07721
110 2.20003 ?.00079
118 ?.00003 0. 00001
128 ?.20003 ?.20000
125 0.00003 @.000008
130 2 .00603 0.20000
135 ?.00003 ?.00000
140 ©.02033 @ . 00000
145 0.00003 ?.00000
150 2.02003 0.00000
155 @.00003 0.00200
160 0.00003 0. 00003
165 ?.00003 0. 00200
178 ¢.00003 0. 0000
175 ?.0¢203 0. 00000
180 0.00763 B.Co000
185 0.20003 B.00200
190 ?.C0003 ?.00000
195 0 .00003 0.00000
200 ?.000@3 ?.00000

Figure 21B. Identification Error and Vibration:
Level
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The next test was to see how well the adaptive inverse controller would track
a change in the operating conditions. The first disturbance was a step change in
the uncontrolled vibration. Figure 22 shows the effect of changing the uncontrolled
vibration at step 130 from (1.0,1.0,1.0) to (2.0,1.5,0.5). The second disturbance
was to change the transfer (T) matrix by 10 and 30 percent while introducing the
step in uncontrolled vibration. These results are shown in Figures 23, 24, 25, and

26.
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Figure 22A. Vibration Reduction for Step Change in Uncontrolled Vibration
After Iteration 130
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ITERATION I.D. ERROR VIBRATION

1 . 00000 9. 00000
2 @.45657 2.41634
. 3 2.42161 4.44880
4 2.31746 6.6094Y
53 0 .30020 7 .997026
6 B.27725 8.37584
7 B.2254%9 7 .586u5
. 8 8.22529 6.93930
- =] B.22546 4. 00408
10 @.22430 4.17732
15 2.10265 3.16234
20 .82622 2.72247
25 @.02262 13.96231
30 2.01812 2.60947
35 0.01766 5.80914
4o @.21743 4.13763
us 0.01604% 11.4086u8
50 2.01346 2.66334
55 2.00261 3.68004
60 2.00136 2.58204
65 ?.00088 7.96703
70 8.00078 Y. 17431
75 ?.00010 3.16856
80 . 00008 2.76308
85 2.00006 13.21733
=Y 0 .00005 2.66917
a5 0 .P0004 6.81383
108 2 .00005 3.00000
105 @.00004 0.00000
112 B.20004 . PO
116 2 .00004% Q.20000
120 ?. 00004 0.00000
125 @ . 00004 ?.00002
130 @.16u58 2.00200
135 B.15255 1.028630
140 2.14792 2.51074
1485 Q.14682 ©.22880
150 @.14659 @.18137
155 @.14655 @.04482
160 2.14654 Q.01980
165 ?.14654% ?.00875
170 B. 14654 B.022387
175 B. 14654 B.00171
180 B. 14654 ?.00075
185 B. 14654 2.809233
180 2. 1465 2.00215
195 B@.14654 2.00007
200 @. 14554 ?.20003
Figure 22B. Identification Error and Vibration
Level
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Figure 23. Vibration Reduction for Step Change in Uncontrolled Vibration
and 10% Change in T Matrix at Step 130
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Figure 24. Vibration Reduction for Step Change in Uncontrolled Vibration
and 10% Change in T Matrix at Step 130. Control Relaxation = 0.60

83



-10

=
N N A VN U MO S T N O I OO N N B
S E N ) E D v 4 8 R A T I [o] N

l L1 [ L | [ I
] 50 100 160 200

I NV E R § E 1 DENT 11 F I € A T I ©C N E R R O R S
j——— LEARNING PHASE } CONTROL PHASE ——]
GAIN VECTOR: 2.3000 ®.3200 8 .3000
CONTROL RELAX:

1 . 0080

Figure 25A. Vibration Reduction for 10% Step Change in Uncontrolled

Vibration and 30% Change in T Matrix at Iteration 130
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ITERATION

BOUWONOTAFWY —~

—_

109
105
110
115
120
125
130
135
140
145
152
155
160
165
170
175
180
185
190
165
200

Figure 25B.

1.D. ERROR
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. 30098
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. 13753
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. 76308
21733
66817
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. D0008
. D020
. O020D
.0Do00
.00C002
.000a
50000
41583
33592
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.@7354
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. 20260
. 20220
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. D023
.B022a
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. 00200
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Identification Error and Vibration

Level
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TNE I1UECNILIFICU INYVYOCKDEC

-0.3416 ~-2.1973 0.808056
2.3027 PD.4724 -2.1868
-8.3868 -0.2298 B.5764

THE TRUE INVERSE

p.6250 -0.2500 8.1250
-0.2508 0.5000 -P.2500
B6.1260 -P.2500 6.6250

INVERSE INITIAL ESTIMATE

P.0000 ?.0080G0 6.0000
e.0000 B.000CD ©.0000
P.O00G G.0080 2.0000

Figure 25C. Identified, True, and Initial
(3x3) Inverse Estimate

86



10

l_LJIllllll|llll

[ 506 1002 1650 200
I NVERGSE 1 O0OFNTTIFTI1CATTION ERRORS
j——— LEARNING PHASE 1 CONTROL PHASE —]

GAIN VECTOR: .3000 ©O 3080 © 3000

CONTROL RELAX:
2.3000

Figure 26A. Vibration Reduction for 10% Step Change in Uncontrolled
Vibration and 30% Change in T Matrix at Iteration 130.

Control Relaxation = 0.60
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120
125
110
116
120
125
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135
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145
159
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1785
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185
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200

Figure 268.
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.4asys
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. 16385

Identification Error and Vibration

Level
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In each case, although the vibration was still nearly eliminated, a steady-state
error remained in the identified inverse matrix after the step changes in vibration
and T. An error was introduced into the inverse matrix because, although the
identification update to the inverse estimate was made proportional to (A© —
C(k)AZT), the change in vibration, AZ, did not correspond to the change
in cyclic pitch, A®, at iteration 130 due to the introduction of a step in the
uncontrolled vibration. Hence, the inverse estimator interpreted the error as
a result of improper inverse matrix identification, rather than as a change in
uncontrolled vibration. After step 130, the changes in pitch correspcnd to the
changes in vibration, and the inverse estimate is recorrected with some residual

€rror.

The reason for the residual steady state identification error can be found
by examination of the inverse control law and the inverse update equa-

tion:

A@: = '—'C;T(k)zmea.sured

CT(k+1) = CT (k) + 2k:2(40; — T (k)azT)

It is seen that if the measured vibration level goes to zero, the commanded
change in pitch will also go to zero. This, in turn, causes the change in
vibration, AZ to go to zero, and thereby makes the inverse update term
go to zero. Hence, the inverse estimate is prevented from chancing, even
though the inverse may be in error. Reaching the optimal control before
the inverse can be identified with low error presents problems only in that
the controller is more likely to become unstable in the event of a sudden
change in the vibration vector. Note that the reason the optimal pitch

may be found before the inverse is completely identified is because it may
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have been formed by some linear combination of A®s over several itera-

tions.

This line of reasoning suggests that if the control is relaxed, or in other
words, if the implemented control is only allowed to be a fraction of the
commanded control, the identification might be improved. This was shown
in Figures 25 and 26, where a lower steady-state identification ecrror was
achieved by reducing the control relaxation from 1.0 to 0.3 . Note that
the lower steady state inverse identification error is traded-off there against
a slower vibration reduction time. It is evident that control relaxation,
as well as the stability gain matrix selection, have an influence on inverse

identification.

Many other runs were made with the (3 x 3) simulation, but are not presented
here in deference to presenting similar results from the (6 x 6) simulation, to be

discussed next.
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6.3

ADAPTIVE INVERSE CONTROL SIMULATION
WITH THE (6 X 6) T MATRIX

Unfortunately, no (6 x 6) transfer matrices of the type discussed in Section
3.3 were available from test data. However, another (6 x 6) transfer matrix,
represeénting the 4/Rev response to cyclic pitch oscillations at 2/Rev, 3/Rev,
and 4/Rev was available from the test data of Chopra and McCloud, 1931.
This matrix (figure 27) was used as if it represented the 4/Rev response to
4/Rev longitudinal, collective, and lateral pitch oscillations. This matrix is
less well conditioned than the (3 x 3) matrix, but performs similarly when
scaled. By scaling the rows of the matrix, the numerical accuracy of the
inverse control technique is improved, in that, the inverse need not contain very
small or large numbers. This corresponds to adjusting the input gains on the
accelerometer (vibration) input channels. If the vibration signal is not too small,
then the transfer matrix terms will not be too small, and the inverse terms too

large.

An important feature of the (6 x 6) simulations was that the effect
of control relaxaticn was studied extensively. Figure 28 has been included
.0 give the reader an idea of how the vibration control is influenced by
changes in the control relaxation term. For no relaxation (relaxation constant
= 1.0), the vibration is alleviated in one step (Figure 28), as expected.
Note that as the relaxation constant is made closer to zero, the vibration is
reduced at a progressively slower rate. With the control relaxation set to

zero, the vibration is uncontrolled, as seen in the last frame. Note that for
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these figures, the inverse matrix is without error. Hence, these plots form a

baseline case in which inverse vibration control is only a function of the control

relaxation.
Response Coatrol harmonics
harmonics
2 cos 2 sin 3 cos 3 sin - 4 cos 4 sin
Vertical
acceleration
4 cos -15.17 -2.02 18.73 -56.22 102.96 20.05
4 sin -5.87 =22.50 54.65 17.76 -21.61 67.37
Lateral
acceleration
4 cos 0.75 8.98 -~-20.52 -2.79 9.34 -8.19
4 sin -5.52 6.91 2.80 -=-21.07 20.52 1.93
Longitudinal
acceleration
4 cos -0.98 0.26 0.05 -2.28 3.89 0.62
4 sin -0.42 -1.11 2.04 -0.09 -0.22 1.71

Figure 27 Data for a (6 x 6) Transfer Matrix, taken from Controllable
Twist Rotor (Chopra and McCloud, 1981).
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For the (6 x 6) simulation runs, the learning phase concept was not used.
The reason for doing this was to simulate the control phase identification
dynamics, for which each change in vibration, in essence, formed a new initial
condition. The procedure used in the (6 x 6) simulations was to therefore
select an initial estimate of the inverse matrix, and then study resulting control

phase.

In Figures 29 through 31, the initial estimate of the inverse matrix
was sélected to be in error by ten percent, and the stability gain matrix,
K;, was selected with all diagonal terms equal to 0.001 . The con-
trol relaxation term was then varied from 0.01 in Figure 29, to 1.0 in
Figure 31. Figure 30 presents the "Part A” results to conserve space.
The effect of using progressively less control relaxation, should be noted.
Whereas the inverse is identified well with high control relaxation (figure
29C), the inverse is poorly identified for low control relaxation (figure
31C).
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ITERATION 1.D. ERRCR VIBRATION

1 ?.00032 0. 00000

2 2.70784 150 . 02200
3 2.70378 148.35811
Y 2.69982 146.71857
5 2.695386 145. 12516
6 2.69220 143,5p956
7 2.68852 141.93190
8 2.68494 140 .37 164

9 2.6814y 138.82872
12 2.67803 137 .30290
18 2.66218 129.92390
23 2.64813 122.94457
28 2.63568 116.34277
39 2.62u63 110.09769
ag 2.61481 104.18973
uo 2 .E0608 Q8 . 60040
14 2.59831 93,31223
50 2.59139 88.130882
55 2.58522 83.57457
&0 2.57972 79.09496
65 2.57u82 74%.85612
70 2.67044 70.84521
75 2.66653 67 .04943
80 2.56304 63.45761
a5 2.55993 60 05859
ag 2.55714 66.84174
a5 2 .55L65 §3.79759
100 2.552u3 50.91656
105 2 . 55044 u8. 19007
110 2.54866 us . 60971
115 2.654707 43. 16770
120 2.54564 4@ . 85641
125 2.54437 38.66905
130 2.54323 36.59892
135 2.54220 34 .63960
140 2.54129 32.78524
145 2.54047 31.03025
150 2.53974 29.36914%
155 2.53908 27 .79709
160 2.53849 26.30927
165 2.53797 24 . 90096
178 2.53759 ) 23.56819
175 2.53708 22 .30666
180 2.53670 21.11275
185 2.53636 19.98269
1908 2.53606 18.91321
195 2.53578 17 .92096
220 2.53554 16.94279

Figure 20B Identification Error and Vibration Level for Ks Diagonals = 0.001,
10 Percent Initial Inverse Error, and Control Relaxation of 0.01
for the Quasi-Steady (6 x 6) Vibration Control Case.
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THE IDENTIFIED INVERSE

9.6789 5.9289 -4 .9p32 -4 . B4 17 5.7936 -9.2607

- -2.7635 6.5850 @.3519 1.9732 -0.8u45y @.2848
-1.1708 -2.274%1 -8.5716 .9217 -2.85090 @.20u42
-3.6503 -1.47186 1.5917 1.6138 -1.41486 2.8u484
-@8.2184 -06.2690 2.2909 0.2327 -0.4045 .4492
1.7612 2.0517 -6.1726 -0.8439 2.6176 1.4833

THE TRUE INVERSE
8.8398 5.utuu -4 .4493 -4 .2197 2.5233 -8.451Yy
-2.5172 .5289 g.3189 1.7938 -2.7666 @.2628
-1.8675 -0.2510 -06.5203 0.8379 -2.4615 .1881
-3.3315 -1.3456 1.49%u4y L4671 -1.2808 2.5999
-.1997 -0.2u452 ?.26u2 .2115 -2.3673 @.4093
1.60697 1.8703 -0.1652 -2.7672 @.5580 -1.3553
INVERSE INITIAL ESTIMATE

9.7238 5.9558 -4 .8942 -4 .B6Y417 2.7756 -9.2965
-2.7689 @.5818 P .3508 1.9732 -%.8433 P.2891

-1 .1743 -0.2761 -0 .5723 ©.9217 -9 .5%5077 ?.2869
-3.6646 -1.u48@2 1.5888 1.6138 -1.4089 2.8599

-0 .2197 -9.2697 P . 2906 ®.2327 -0 .4040 ®.4502
1.7707 2.8573 -2.1707 -2.8439 @.6138 -1.4908

Figure 29C Identified, True, and Initial Inverse Matrices for Is
Diagonals = 0.001, and Control Relaxation of 0.01 .
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Figure 30 Identification Error and Vibration Reduction, with Ks
Diagonals = 0.001 and 10 Percent Initial (6 x 6) Inverse
Error, for Decreasing Control Relaxation.
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Figure 31A  Vibration Reduction with Ks Diagonals = 0.001, 10 Percent
Initial Inverse Error, and Control Relaxation of 1 0 for the
(6 x 6) Quasi-Steady Vibration Control Case.
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ITERATION I1.D. ERROR VIBRATION

1 2. 20000 2. 00000
2 2.70784 150 . 00000
3 232.56639 16.00130
4 229.86633 18.46B45
5 226.06357 22.5%813
) 220 .97832 27 42004
7 214.585633 32 .89634
8 207 . 16658 38.88614
] 199.31558 45. 16114
18 191.75626 61.43977
15 168 .75954 76.76307
20 161.413@2 91.73647
25 168.64373 101.28940
30 167 . 13205 108 .05312
35 1566.32390 113, 19624
4o 165.811657 117 .30265
45 1565.46278 120 .69724
1) i55.21259 123.67696
65 155.02562 126.06726
60 164.88138 128.25635
65 i154.76724 130.20509
70 184 .67496 131.95773
75 154 .595900 133.54858
80 154.53563 135. 00261
85 154.48187 136. 34D4Y
=1 154 4359y 137.57875
a5 154.39630 138.72968
100 154.36169 139.88482
185 154.33122 4P . 81235
110 154 . 30437 141 .76059
115 154.28036 t42 65502
120 154 .26831 143.58166
125 154.23959 14y, 39458
130 184 .22217 145. 06798
135 154.20638 145, 78559
140 154.18193 146 . 49034
145 154.17873 W7 SRR
150 154 . 16664 147 .79152
165 154 . 15543 148 .40242
160 6% . 14514 148 .98965
165 164 . 13564 143.55470
170 154.12672 15@.093817
175 184.118u4 180 .62462
180 154.11076 151 .13202
185 15418356 151.62227
190 154 .09680 152 .09695
185 154%.09053 152 .55644
200 154 .08459 153.0235

Figure 31B Identification Error and Vibration Level for Ks Diagonals = 0.001,
10 Percent Initial Inverse Error, and Control Relaxation of 1.0
for the Quasi-Steady (6 x 6) Vibration Control Case.
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THE IDENTIFIED INVERSE

1.2253
-1.7453
-@0.5281
-@0.9482

6.018Y4
-8.06163

THE TRUE INVERSE

8.8398
-2.5172
-1.0675
-3.3315
-8.1897

1.6887

INVERSE INITIAL ESTIMATE

9.7238
-2.768¢
-1.17243
-3.6646
-2.2197

1.7707

Figure 31C

@.86562 -6.5834
1.1960 @.5554
g.1116 -0 . 4431
2.1499 2.1320
-B.1268 #.3382
G.9856 -6.5278
5.414u -4 .44493
.5289 ?.3189
-p.2510 -9.5283
-1.3456 1.444y
-B.2452 P.2642
1.8703 -2.1652
6.9558 -4.8942
?p.5818 ©.3508
-2.2761 - .5723
-1.48@2 1.5888
-0.2697 ®.2906
2.08573 -p.1707

Identified, True,

64067
.97 31
.9216
.61358

?.2326

.8437

.2187
. 7938
.8379
4671

2.2118

7672

.64 17
.8732
.9217
.6138

8.2327

2.8u439

L E742
.2526
.7660
.49862
.4892
.3280

.5233
.7666
.4615
.2808
.3673
.5580

.7756
.8433
.50877
.4089
. 4240
.6138

and Initial Inverse Matrices for
Ks Diagonals = 0.001, and Control Relaxation of 1.0 .
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It is now seen that, unlike the case of using a perfect inverse estimate,
with no error, the vibration control and identification may go unstzble if the
control is not relaxed enough. When the control is very relaxed (relaxation
term small), the vibration reduction is smooth and steady. Vibration control
improves as the control is relaxed less and less. Identification and control
are unstable if the relaxation constant is 0.91 or higher, for the case of ten
percent initial error in the inverse matrix. Also note that if the vibration
is alleviated too quickly, a steady-state error in the identified inverse matrix
persists. As before, the reason for the steady-state error is that once the
vibration goes to near zero, the inverse update (or correction) also goes to

Z€ro.

The next figure shows the same type of results, with the initial estimate
of the inverse again in error by ten percent, but with the diagonals of (Ks)
increased to 0.01 . The results are presented in order of decreasing control

relaxation.
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Note that now even a relaxation term of 0.3 quickly destabilizes the
adaptive inverse vibration control method. The boundary value for stuble
ccntrol and identification is where the relaxation term is 0.2870, (Figure
32). Note the interesting convergence pattern when stability is just mar-

ginal.

These results indicate that equivalent results are obtained by using a control
rclaxation of 0.2 with K; diagonals of 0.001 or by using a control relaxation
of 0.25 with K equal to 0.01. Note, however, that in the latter case, the
system is closer to the unstable control relaxation limit. Furthermore, vibration
reduction with K equal to 0.01 cannot be made to work as fast as that shown

in Figure 30, showing K equal to 0.001 with a control relaxation of 0.87.

The next figures show that as the stability gain diagonal elements are in-
creased, the control must be more and more relaxed to achieve stable vibration

reduction.
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The conclusion is that there are no absolute limits on either the magnitude
of the stability gain matrix or the amount of control relaxation. Rather, it is
the pro8uct of the control relaxation and the stability gain matrix magnitudes
that is important. For K; diagonal elements of 0.05, the relaxation constant
must be less than 0.1155 . If the K; diagonals are 0.1, the relaxation term
can be no greater than 0.07. For K diagonals of 5.0, the identification is still
stable if the control relaxation is less than 0.0081 . These points represent
the points of maximum control relaxation whith can be tolerated without
making the system unstable, and have been plotted in Figure 36. This plot
indicates that when the magnitude of the K diagonal elements are chosen to
be 0.001, or less, the amount of control relaxation need be small (relaxation
term large). Higher values of K; have narrower control relaxation stability

regions.

It seems that it is better to choose the diagonal elements or K small, and
use a small amount of control relaxation, rather than choosing the diagonals
of K; to be large, and having a very narrow range of stable control relaxa-
tion values. For example, in figure 33 it is seen that for a K of 0.05,
that a control relaxation of 0.1155 produces good convergence, whereas con-
trol relaxation of 0.1156 produces completely unstable convergence. Moreover,
the preceding plots show that when K is large, the overall vibration reduc-
tion is slower, due to the higher amount of control relaxation needed to
achieve stability. Hence, using smaller K diagdnal elements and less control
relaxation appears to make the LMS adaptive inverse control technique more

robust.

The following figures present results for the same type of simulation

as that done for the above cases, except that the initial estimate of the
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inverse is in error by fifty percent, rather than ten percent. For each
group of runms, the diagonal elements of the stability gain matrix are
held constant, and the relaxation term is varied to explore the stability

limits.

Log K¢

-3 - ~

[ l | I I
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Control Relaxation

Figure 36 Plot of Adaptive Inverse Control Marginal Stability Points
for the (6 x 6) Simulation for 10 Percent Inverse Error,
Quasi-Steady Vibration Control Cases.
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INITIAL INVERSE ESTIMATE

13.2697 8.1216 -6.6739 -6.3295 3.7850 -12.6771
-3.7768 @.7934 B.4783 2.6907 -1.1499 @.39042
-1.6013 -p.3766 -9.78084 1.2569 -2.6923 @.2822
-4.9973 -2.01€4 2.1666 2.2006 -1.9212 3.8999
- -9.2996 -2.3678 @.3963 2.3173 -2 .55089 2.6140
2.4148B 2.806506 -0 .2328 -1.1508 @.8370 -2.8329
TRUE INVERSE
- 8.8398 5.4144 -4.4%4903 -4.2197 2.6233 -8.4614
S -2.8172 2.5289 P.3189 1.7938 -0.7666 ?.2628
-1.0675 -3.2610 -9.65283 e.8379 -2.4615 @.1881
-3.3315 -1.3456 1.444Y 1.4671 -1.2808 2.5999
-2.1997 -p.2u52 P.2642 8.2116 -9 .3673 2.4093
1.6097 1.87063 -9.1552 -0.7672 @.6580 -1.3553

IDENTIFIED INVERSE, Kcr = 0.20

i 5.4268 5.8216 -7.4403 -6.32091 5.3177 -9.6112
| -3.3145 1.8702 @.65706 2.6906 -1.33u4y .0252
-1.3100 -0.2017 -0.7222 1.2568 -0.8087 BOYI
-3.7722 -1.2833 2.4115 2.2005 —2. %100 2.9199
i -0.1922 -9 .3034 P.u4w178 P.3172 ~-®.5939 ?.5281
i 1.6001 2.3221 -0.3938 -1.1507 1.1591 -1.3887

IDENTIFIED INVERSE, K¢cr = 0.35

1.6619 1.1622 -8.9928 -6.3283 8.4230 -3.3999

-2.3798 1.6318 . ©.7676 2.6906 -1.7082 -0.7224

o -8.71988 8.152u -9.6042 |.2568 -1.0u4u47 -@.4229
- -1.2983"° @.2060 2.0078 2.2003 -3.4036 ?.93u47
- ?.8262 -9.1729 @.4612 0.3172 -0.6808 @.35u2
-0.0226 1.3430 -0.7201 -1.1505 1.8117 -0.0834

i

Figure 38 Comparison of Initial, True, and Identified Inverses for 50
Percent Initial Inverse Error, but Different Control . .
Relaxation Values.
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INITIAL INVERSE ESTIMATE

13.2697 8.1216 -6.6739 -6.3235 3.7858 -12.6771

-3.775658 B.7934 ?.4783 2.6907 -t.1449¢ 2.3942

-1.6013 -@2.376% -0.7804 1.2569 -0.6923 ¢ .2822

i -4.9973 -2.018Y4% 2.1666 2.2006 -1.9212 3.8999
-5.2996 -8.3678 6.3963 .3173 -2.5509 0.6140

. 2.41486 2.8066 -0.2328 -1.1608 ?.8370 -2.0329

| TRUE INVERSE

8.8398 5.414Y -4 .4493 -4.2197 2.5233 -8. 4614

-2.85172 .6289 .3189 1.7938 -6.7666 0.2628

-1.8675 -¢.2510 -0.5203 ®.8379 -0.4615 6.188)

-3.3315 -1.3456 1,444y 1.4671 -1.2808 2.56999

-0.1997 -0.2462 @.2642 8.2115 -0.3673 @.%w093

1.6897 1.8783 -0.1662 -8.7672 6.5580 -1.36553

IDENTIFIED INVERSE, K¢cr = 0.0105

.4062 65.8066 -7 .4426 -6.3255 §.3233 -9.6972
-3.3119 1.86720 ©.6709 2 .6902 -1,.3350 0.b235
-1.3083 -90.2006 -8.7220 1 .26665 -8.8092 ®.0us81
-3.7663 -1.2784 2.4123 2.1984 -2.4129 2.9155
-2.1916 -9.3030 g.4178 g.3171 -0 .594P ®.5277

1.6046 2.3190 -®.3943 -1.1500 1.1603 -1.38587

IDENTIFIED INVERSE, Kcr = 0.0110

1.7897 1.2204 -8.9727 -6.3274 8.3831 -3.4791
-2.3917 1.6240 2.7560 2.6904 -1.7033 -@.7129
-90.7273 2.1480 -0.6057 1.2567 -1.0417 -®2.41689
-1.3216 ®.1874 2.%013 2 .2000 -3.3909 ¢.9600

2.0224 -9.1746 P.4607 9.3172 -0.6797 ©.3564
-ﬂ.ﬁﬂél 1.3562 -9.7159 -1.1504 1.8033 -2 .1001

Figure 42 Comparison of Initial, True, and Identified Inverses for
50 Percent Initial Inverse Error, but Different Control
Relaxation Values.
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Again, it is found that as the diagonal terms of Ky are increased, the
control must be more and more relaxed to obtain stable convergence. Moreover,
it is seen that the relaxation limits become smaller as K becomes larger.
The points of neutral stability have been plotted in Figure 43. In some
cases, the relaxation must be so low that it is doubtful that the controller
would be capable of functioning in an adaptive fashion. Whereas the (3 x 3)
simﬁlation had little trouble adapting the inverse estimate from all zeros, the
higher order simulation evidenced troublesome identification if the initial inverse
estimate was too far from the truc inverse values. Hence, vibration control
performance is compromised if the a plant inverse is too far away from the current

estimate.

Figures 44, 45, and 46 plot the minimum identification error for three
values of K as a function of control relaxation. It is seen that the
LMS estimator is more tolerant to various control relaxation values if
the stability gain magnitude is kept small.  For high K, values, only
a very narrow Tegion of control relaxation values will be even marginally

stable.
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Figure 43 Plot of Adaptive Inverse Control Marginal Stability Points
for 50 Percent Initial Inverse Error, for the
Quasi-Steady (6 x 6) Simulation.
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Figure 44 Plot of Minimum Inverse Identification Error in (6 x 6) Matrix
for I{s = 0.001, as a I'unction of Control Relaxation.
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Figure 46 Plot of Minimum Inverse Identification Error in (6 x 6) Matrix
for Ks = 0.10, as a Function of Control Relaxation.
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6.4

EFFECTS OF MEASUREMENT NOISE ON
LMS ADAPTIVE INVERSE CONTROL

In actual implementation of the extended LMS algorithm to control helicopter

vibration, it is reasonable to expect some measurement noise (or FFT conversion)
errors on the sensed vibration vector. Simulation studies with the (6 x 6) matrix
were therefore made to determine the effect of noise on the performance of the
LMS adaptive inverse control method. To do this, white noise was added to the

sensed vibration vector representing the Fourier coefficients of the accelerometer

signals.

The following figure demonstrates perfect inverse control in the presence
of 1, 5, 10, and 20 percent white measurement noise. For these simula-
tion runs, the initial inverse estimate contained no error and was not al-
lowed to change (K = =zero). The vibration is seen to be reduced to
zero to within the tolerances permitted by the measurement noise.  This
figure is intended to serve as baseline comparison case which represents

ideal inverse control using a perfect inverse and white measurement noise

only.
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The first question to be raised was whether or not the adaptive inverse
control method was stable in the presence of white measurement noise. The
answer, somewhat surprisingly, was that the method was not stable for even
the most benign cases of semsor noise. Figure 48 illustrates that even for
one percent measurement noise, and a Ky = 0.001 that the convergence
process is unstable. The vibration appears to have been controlled well here,
but examination of the digital record following the plot shows that the in-
verse identification error is growing with the pumber of iterations. Figure
49 shows that when the noise level is increased to five percent, the ipverse
identification error grows rapidly. Similar results are seen in Figure 50, where
the noise has been left at one percent, but the stability matrix diagonals in-
creased from 0.001 to 0.01 . Finally, in Figure 51 the identification process

has been made very unstable with five percent noise and Ks equal to 0.01.
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Control with No Initial Inverse Error, and No Control
Relaxation with 1 Percent White Measurement Noise.
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i I1TERATION 1.D. ERROR VIBRATION
E -9
- o @. 00000 2.00100
] 5 2.19499 2.2u864
10 0.23238 2.52320
16 8.27613 2.1816%
20 ?.32952 1.75705
- 25 2.35224 1.61314
30 @.42585 2.36051
35 2 .50009 2.43958
H 42 ?.49889 1.50817
46 8.62570 1.029%94
60 @.5393! 1.71510
65 ?.58883 2.21627
60 0.66305 2.38938
65 @.67575 2.1032%
70 2.68185 2.10687
75 8.71217 {.84504
89 2.86533 2.67723
8s 2.91436 1.82u457
ag D .95557 2.00340
as 1.06328 1.81098
120 1.10738 1.83546
105 1.36762 1.48405
110 1.42337 ?.81990
115 1.46276 {.853u42
120 1.50280 1.18123
125 1.65111 2.07368
130 1.60331 1.69420
135 1.67410 2.92733
143 1.76640 2.34431
145 1.77887 2.41710
160 1.81204 1.77316
155 2.02498 1.81796
160 2.04512 1.69420
165 2.22504 1.8518%
170 2.33659 1.056508
175 2.40258 2.34517
180 2.4P726 2.26187
185 2.429u44 1.31642
186 2.48207 1.97092
195 2.63194 2.42080
200 2.72100 1.4312!
a5 Figure 48B  Identification Error and Vibration Level with Perfect Inverse,
N Ks Diagonals = 0.001, and 1 Percent White Measurement
g Noise.
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THE IDENTIFIED INVERSE

7.8792 4.9291 -4.08428 -3.8597 2.3756 -7 .6000
-2.3141 2.4749 8.29956 1.6096 -d.6596 B.2922
-@.9399 -0 .2096 -0 . 4644 8.7609 -d . 414wy @.1717
-2.9959 -1.2229 1.3181 1.3386 -1.1733 2.3582
~-8.1761 -9.2222 g.2412 @.1970 -@d.3394 B6.3670

1.3908 1.6886 -8.18622 -B.7115 8.5274 -1t.1e48

THE TRUE INVERSE

8.83068 5.414Yy -4 .4493 -4.2197 2.6233 -8.451Y4
-2.85172 p.6289 #.3189 1.7938 -0.7666 D.2628
-1.08675 -0.2510 -0.5203 ?.8379 -8 .4615 2.1881
-3.3316 -1.3466 1. .44b4yYy 1.4671 -1.2808 2.5999
-2.1887 -8.2452 8.2642 ®.2115 -®.3673 P.4@293

{f . 6097 1.8703 -0.1552 -8.7672 @8 .55802 -1.35563

INVERSE INITIAL ESTIMATE

8.8398 S.41uy -4 .4493 -4.2197 2.5233 -8.451Y4
-2 .5172 ¢.5289 2.3188 1.7938 -2 .7666 0.2628
-1.0675%5 -8.2510 -p.5283 ®.8379 -9 .4615 e..881
-3.33156 -1.3u456 1.44%4¢Yy 1. .u4671 -1.2808 2.54999
-8.1897 -@.24652 B.2642 B.21168 -0 .3673 2.4093

1.6097 1.8703 -¢.1552 -0 .7672 . .5580 -1.3553

Figure 48C Comparison of Identified, True, and Initial Inverse Matrices
for 1 Percent Measurement Noise Showing Divergence from
Perfect Initial Conditions on Inverse.
Ks Diagonals = 0.001, Contr. Relax. = 1.0.
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Figure 49 LMS Adaptive Inverse Identification Error and Vibration
Control with No Initial Inverse Error, I(s Diagonals = 0.001,
and 5 Percent Measurement Noise.
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TdE IDENTIFIED INVERSE

-0 .28005 ?.0042 2.0011 -3.0809 @.0031 ¢.0012
?.0003 - -0.0022 -2.00086 2.0005 -0.0@216 -9 .0006
0.000.1 -2.0013 -0 .0004 5.0023 -0.0009 -90.08003
?.0002 -2.08015 -2 .0004 2.00083 -0.0010 -0.0004
©.0000 -0.00223 -9 .0001 @.0001 -2.0002 -9.0001

-@.00082 0.0013 .0004 -@.00083 ©.0010 0.0004

THE TRUE INVERSE
8.8398 S.41uu -4.4%403 -4.2197 2.6233 -8.4514

-2.5172 ?.5289 2.3189 1.7938 . -@.7666 ?.2628

-1.0675 -@6.251@ -0.5203 ©.8379 -2.4615 ©.1881

-3.3315 -1.3456 1.444y 1. 4671 -1.2808 2.5999

-9.1987 -0 .2452 6.2642 2.2115 -9.3673 2.4093
1.6097 1.8703 -9 .1552 -6.7672 ®.5580 -1.3553

INVERSE INITIAL ESTIMATE
8.8398 B.4iuy -4 . 4493 -4.2197 2.6233 -8.4514

-2.5172 p.65289 ¢.3189 1.7938 -0 .7666 ®.2628

-1 .8675 -@.2518 -¢.5203 ®.8379 -0 .4615 @.1881

-3.3315 -1.3456 1.444y 1. 4671 -1.2808 2.599

-p.1997 -8 2452 @.26u42 @.2115 -2 . 3673 ©.40093
1.6087 1.8703 -0.1552 -0.7672 ®.5580 -1.3553

Figure 51C Comparison of Identified, True, and Initial Inverse Matrices
for 5 Percent Measurement Noise Showing Divergence from
Perfect Initial Conditions on Inverse.
I(s Diagonals == 0.01, Contr. Relax. = 0.20 .
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The interesting feature to note is that the identification error reaches
a plateau with increasing iteration number. If the identified inverse is ex-
amined at the end of run, it is found that it has all elements nearly
cqual to zero (Figure 51C). This explains the plateau region of the
identification error. The added noise has corrupted the association between
the changes in measured vibration and applied changes in cyclic pitch control.
Tcnce, a matiix of zeros is found as an indication of no identified associa-

tion.

To further explore the effects of noise, simulation runs were conducted
in which the initia]l inverse estimate was in error by ten percent, and
a step change in the uncontrolled vibration was introduced at iteration
100. Figure 52 shows the uncontrolled vibration case for mo adaptive in-
verse control and inverse control of the vibration with the K diagonals
equal to 0.001, and a 0.1 control relaxation. In both cases, no measure-
ment noise was introduced. After the step change in uncontrolled vibra-
tion, the new vibration vector was quickly minimized in a few itera-

tioms.

With one percent white measurement noise, the adaptive inverse control tech-
nique appearcd to be successful in terms of controlling the vibration and con-
verging to the true inverse after the step disturbance (Figure 53). However,
for 5 percent measurement noisc, the control system was spectacularly un-
stable. Note the large increase in the inverse estimate error at iteration
100, produced by adding a step in vibration. This error resulted from the
change in vibration being unrelated to the change in pitch at the scme itera-

tion.
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The first thought which came to mind was to reduce the stability gain
constant K (or the relaxation coustant) so that the estimator would not track
the noise disturbances. As seen in figure 54, this approach seemed to work.
K¢ was reduced to 0.0001, and the vibration appeared at first glance to have
been controlled successfully. However, when the digital record was examined
more closely (figure 54B), it was seen that the identification error was still
increasing. Hence, reducing the magnitude of the stability gain elements only
retarded the onset of the impending identification instability. A very low K also
made the extended LMS algorithm less responsive to changes in the operating

conditions.

The effect of relaxing the comtrol was shown (Figure 55) to have
even more disastrous consequences. The reason for the even more un-
stable behavior is that when the control step size was reduced, the noise
at each step was made greater relative to the true change in vibra-
tion associated with each change in the cyclic pitch vector.  Hence, by
increasing the control relaxation, the signal to noise ratio was further

degraded.

134



1600
. .
el o b e e
S E N S E D v { B R A T 1 o] N
1000
2 [ N B | D f——— S — —
Q 50 100 150 200
INVERSEIDENT!FICATIONERRORS
GAIN VECTOR: 2 .0001 ?.0001 2.8001 o 0001 2.2001 @.00801
PERCENT NOISE: CONTROL RELAX:
= 5.0000 0.1000

Figure 54A LMS Adapative Inverse Control for Vibration Change at Step
100, with I{s Diagonals = 0.0001, Control Relaxation of 0.10,
and 5 Percent White Measurement Noise.
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ITERATION 1.D. ERROR

VIBRATION
1 ?.00220 @ . 00000
2 2.70784 149.91674
3 2.59658 128.22580
Y 2.64891 115 .64104
5 2.44081 101.010219
5 2.47238 102.48978
7 2.48193 a1,37861
8 2.35151 77 .148086
] 2.28532 65.54250
10 2.28830 B4 . 4B385
15 1.97084 37 .56793
20 1.64230 16.48847
25 1. 43040 19 .3749%
30 1.22658 14.63641
35 @.92553 8.32086
4o ©.86039 B8.65423
us 9.75268 7 .86046
50 2.741D1 .9.94352
65 2.61290 8.81204
60 B.48714 9.62729
65 B.40817 9.51646
70 @.38389 9.14383
75 @.36201 7 .53644
80 @.20626 7.52283
85 2.14886 7.327819
=] 2.11373 9.293998
95 2.25785 6.60838
100 23.32772 122 .44373
105 23.232u48 a5.42108
110 23.01586 73.50512
115 23.66547 6@ . 33556
120 24 . 30606 47 . 96903
125 24 .32661 Y1.76141
130 24.30917 28 .40005
135 24.58439 27 .22986
149 24.37214 24.59882
145 24 .82065 15.84469
160 24 82135 10.12388
155 24 .41597 14.00892
160 24.25171 9.65614
165 2428445 13.57069
170 24 .27261 5.69457
176 24.77578 9.32713
180 25.10926 4.04190
185 25.26221 8.84717
180 25.£5704 6.40113
195 26.44195 7 .77266
200 26.57766 7 .72467

Figure 54B Identification Error and Vibration Level for Vibration Change
at Step 100, with Ks Diagonals = 0.0001, Control
Relaxation of 0.10, and 5 Percent White Noise.
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Figure 55 LMS Adapative Inverse Control for Vibration Change at Step
100, with I{s Diagonals = 0.001, Control Relaxation of 0.01,
and 5 Percent White Measurement Noise. .
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The noise problem was remedied by averaging the control and response
signals over a small number of iterations. In this method, for example, the
last ten vibration measurements and pitch control commands were stored in
memory. When a new vibration measurement was taken, it was added to
the previous nine vibration measurements. The average was then found and
used as the current vibration measurement for use with the inverse control law.
Similarly, the last ten cyclic pitch commands were averaged over ten cycles for
use with the extended LMS estimator. Hence, for the case of ten averaging

cycles,

k
AB(k)= D AS(n)
n=k—9
and,

k
AZ(k)= Y AZ(n)

h=k—9

Figure 56 shows successful identification and control for K, diagonal ele-
ments of 0.001 with control relaxation of 0.1, at the 5 percent, 10 percent,
and 15 percent noise levels, using the averaging method. The vibration was
reduced, and the identification error became smaller with increasing number
of iterations. For 20 percent noise, the inverse identification was again un-

stable.
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If the relaxation constant is increased from 0.1 to 0.8, the averaging
method will allow accurate identification with 20 percent measurement noise
(Figure 57). Figure 58 shows that thirty percent noise can also be handled
if the control relaxation is set at .18. Furthermore, figure 59 illustrates that
if the T matrix elements are changed by ten percent while executing the
step change in vibration at iteration 100, the adaptive inverse control method
using averaging will still be stable and responsive to changes in operating

conditions.
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Figure 57 LMS Adaptive Inverse Control with Ks Diagonals = 0.001 and
0.80 Control Relaxation, with 20 Percent Noise and Change in
Vibration at 100 Using Averaging Method (10 Cycles.) .
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The averaging method for reducing noise sensitivity appcars to provide
a simple, yet effective, means for improving the robustness of the adap-
tive inverse control method. If fact, if not done, the LMS adaptive inverse
control method will not work at all. This does not invalidate the theory
presented previously in the analysis section. This is because the extended
LMS identification analysis (Section 5) only proved inverse identification con-
vergence in the limit of many control and identification cycles. Nothing can
really be said about any particular measurement. By averaging, the effect is
to take out the measurement noise by building a memory into the extended
LMS filter. The memory slows the adaptive response time somewhat, yet
not to a significant degree, because for stable convergence, an amount of con-
trol relaxation is needed anyway. Hence, the loss in response time caused
by averaging is more or less made up by the fact that less control relaxa-
tion is needed to stabilize the adaptive process when using the averaging

method.

6.5

VIBRATION CONTROL USING THE AVERAGED
LMS ADAPTIVE INVERSE CONTROL METHOD

In the previous (6 x 6) simulations, the adaptive inverse transient ideatification
behavior was simulated for only step changes in the uncontrolled vibration
level. The reason for this was that there was much to be learned from

that simple exercise. However, it is still desirable to know how well the
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extended LMS algorithm can track rapid changes in operating conditions,
such as those produced by wind gusts impending on the helicopter. For
. these simulations, the averaging method presented in the last section has been

used.

The challenge presented by these simulation runs was to minimize a con-

tinuously changing uncontrolled vibration vector. The uncontrolled vibra-

tion vector elements were varied in a sinusoidal fashion.  Furthermore,
each element was varied at a different rate, to see when the LMS adap-
tive inverse process could no longer track the changes in operating condi-

tions.

The case of uncontrolled vibration resulting from no adaptive inverse
control is shown in Figure 60, along with the ideal inverse vibration con-
trol level possible, using an inverse with no error and a sensed vibration
signal with no measurement noise.  The latter forms the ideal baseline
comparison case for the transient identification performance analysis to fol-

low.
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The case of no measurement noise is examined first. Figure 61 shows that
for K diagonals of 0.001 and control relaxation of 0.4, the vibration of all but
the fastest varying two channels has been controlled. By decreasing the control
relaxation to 0.8, the vibration level for each channel has been controlled to an

acceptable degree.

When measurement noise is added to the vibration measurement, the outcome
is slightly different. Figure 62 repeats the case for the K diagonals of 0.001 with
a control relaxation 0.8 . It it now seen that the fastest varying channel cannot
really be controlled at all. The control for the other channels is acceptable. It is
also seen that reducing the control relaxation to 0.5 does not change this outcome

very much.
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Changing the amount of control relaxation did not enhance the tracking
performance of the fastest varying channel. The most likely explanation is
that the channel changed too fast relative to the time constant of the ten
cycle averaging which took place on the measured vibration. Hence, the
conclusion is that the averaged LMS adaptive inverse control technique can
form a robust vibration control system, provided the changes in the vibration
hzrmonics to be controlled do not change on the order of the averaging time
constant of the identification process. Wind tunnel experimentation or actual
flight testing is needed to determine the necessary degree to which the averaging
technique is needed to make the LMS adaptive inverse control method work

successfully.

150



T O AN 5000 S ]

VII. CONCLUSIONS

The extended LMS adaptive inverse control technique was shown to have good
potential for reducing N/Rev helicopter fuselage vibration. The few number of
operations required to implement the method makes it computationally attractive.
Computer simulations using the (3 x 3) and (6 x 6) transfer matrix models
were used to help validate and extend the results predicted by the theory. The
overall conclusion is that the LMS adaptive inverse control method can form a
robust vibration control system, but will require some tuning of the input sensor
gains,'the stability gain matrix, and the amount of control relaxation to be

used.

The extended LMS algorithm can be used to adapt an initial estimate of
the inverse prior to closed-loop control. For low rank order plants, such as the
(3 x 3) simulation, the extended LMS é.lgorithm can be started without any a
priori knowledge of the inverse matrix. The learning phase of the method was
shown to be capable of identifying the inverse, starting from an initial inverse
estimate consisting of a matrix of zeros. The learning curve of the controller
during the learning phase was then shown to be quantitatively close to that
predicted by averaging the learning curves of the normal modes. The (6 x 6)
simulation, howevef, indicated that for higher order transfer matrices, a rough
estimate of the inverse is needed to start the algorithm efficiently. The more the
starting estimate is in error, the more likely the identification process will become

unstable.

For best performance, the stability gain matrix elements should be chosen

small. Low control relaxation may then be chosen to quickly alleviate the

151



vibration. The eigenvalues of the signal information matrix predict the stability
limits for the diagonal elements of the stability gain matrix only during the
learning phase, when the control signals are known in advance. During the
control phase, the signal information matrix is not known, and the selection of
the stability gain matrix and the amount of control relaxation to be used must
be found experimentally. The simulation results indicated that, in general, the
product of the control relaxation cpd the magnitude of the stability gain matrix
must be kept within limits. Low values of K; make the controller less sensitive
to control relaxation selection, and permits faster and more stable vibration
reduction, than by choosing K¢ large and the control relaxation coefficient small.
Given a fixed amount of control relaxation, very low values of K make the
inverse identification process smooth, but slow. The best selection of the stability
gain matrix diagonal elements and the amount of control relaxation is basically
a compromise between slow, stable convergence and fast, yet potentially unstable

identification.

The LMS adaptive inverse control algorithm was shown to be capable
of adapting the inverse {controller) matrix to track changes in the flight
conditions.  The algorithm converged quickly for moderate disturbances,
while taking longer for larger disturbances. Perfect knowledge of the
inverse matrix was not required for good control of the N/Rev vibra-

tion.

It was shown that measurement noise will prevent the LMS adaptive in-
verse control technique from controlling the vibration, unless the signal averaging
method presented here is incorporated into the algorithm. This technique gives
the LMS algorithm a memory, and greatly improves the robustness of the control

system.
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Wind tunnel or flight testing must now be done to tune the extended LMS
adaptive inverse control technique for an actual application and validate the results

- found in simulation.

4

*
Fy

-

153




REFERENCES

Brown TJ and McCloud JL II: Multicyclic Control of a Helicopter
Rotor Considering the Influence of Vibration, Loads, and Control Motion.
Annual Forum of the American Helicopter Society, Washington, D.C., May
1980.

Bryson AE Jr. and Ho Y-C: Applied Optimal Contrcl: Optimization,
Estimation, and Control. Blaisdell Publishing Company, Waltham, Mass.
1969.

Chopra I and McCloud JL II: Considerations of Open-Loop, Closed-
Loop, and Adaptive Multicyclic Control Systems. Amecrican Helicopter
Society Northeast Region National Specialist’s Meeting on Helicopter Vibration
"Technology for the Jet Smooth Ride”, Hartford, Conn., 1981. '

Davis MW: Refinement and Evaluation of Helicopter Real-Time Self-
Adaptive Active Vibration Controller Algorithms. NASA CR (No. pending),
November 1983.

Gessow A and Meyers GC: Aerodynamics of the Helicopter. Frederick Ungar
Publishing Company, New York, 1952.

Goodwin GC and Payne RL: Dynamic System Identification: Ilxperiment
Design and Data Analysis. Academic Press, New York, 1977.

Johnson W: Helicopter Theory. Princeton University Press, Princeton, New
Jersey, 1980.

Johnson W: Sel{-Tuning Regulators for Multicyclic Control of Ielicopter
Vibration. NASA Technical Paper 1996, May 1982.

Kretz M, Aubrun J-N, and Larche M: Wind Tunnel Tests of the
Dorand DII 2011 Jet-Flap Rotor. Volumes 1 and 2. NASA CR-114693,
1973.

McCloud, JL III: An Analytical Study of a Multicylic Controllable Twist
Rotor. Paper No. 932, 31st Annual F'orum of the American Helicopter Socicty,
Washington, D.C., 1975.

154



McCloud JL II and Kretz M: Multicyclic Jet-Flap Control for Alleviation
of Helicopter Blade Stresses and Fuselage Vibration. Rotorcraft Dynamics, NASA
SP-352, 1974, pp. 233-233.

McCloud JL IIT and Weisbrich AL: Wind Tunnel Test Results of
a Full-Scale Multicyclic Controllable Twist Rotor. Paper No.  78-60,
Annual Forum of the American Helicopter Society, Washington, D.C., May
1978.

Molusis JA, Hammond CE, and Cline JH: A Unified Approach to the
Optimal Design of Adaptive and Gain Scheduled Controllers to Achieve Minimum
Helicopter Rotor Vibration. 37th Annual Forum of the American Helicopter
Society, New Orleans, La., May 1981.

qo sy

Powers RW: Application of Higher Harmonic Blade Feathering for Helicopter
Vibration Reduction. NASA CR-158985, 1978.

Sage AP and Melsa JL: Estimation Theory with Applications to Communications
and Control. McGraw Hill Book Company, New York, 1971.

Shaw J and Albion N: Active Control of the Helicopter Rotor for Vibration
Reduction. Paper No. 80-68, 36th Annual Forum of the American Helicopter
Society, Washington, D.C., 1980.

Sissingh GJ and Donham RE: Hingeless Rotor Theory and Experiment on
Vibration Reduction by Periodic Variation of Conventional Control. Rotorcraft
Dynamics, NASA SP-352, 1974, pp. 261-277.

Taylor RB, Farrar FA, and Miao W: An Active Control System for
Helicopter Vibration Reduction by Higher Harmonic Pitch. Paper No. 80-
71, 36th Annual Forum of the American Helicopter Society, Washington, D.C,
1980.

Widrow B: Adaptive Filters. Aspects of Network and System Theory, Holt,
Rinehart, and Winston, Inc., New York, 1970

Widrow B: Adaptive Noise Cancelling: Principles and Applications.
Procecdings IEEE, Volume 63, pp. 1692-1716, 1975.

Widrow B and Hoff ME Jr: Adaptive Switching Circuits. IRE WLESCON
Convention Record, pp 96-104, 1960.

Widrow B, Mantey P, Grifiths L, and Goode B: Adaptive Antenna
Systems. Proceedings IEEE, Volume 55, No. 12, pp. 2143-2159, December

?“(]L (*}1"- i e

155




1967.

Widrow B, McCool JM, and Medoff BP:.Adaptive Control by Inverse
Modeling. Conference Record of 12th Asilomar Conference on Circuits, Systems,
and Computers, pp. 90-94, November 1979.

156



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

TM-86829

4. Title and Subtitle 5. Report Date

Adaptive Inverse Control for October 1985
- Rotorcraft Vibration Reduction 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Stephen A. Jacklin 85396
- 10. Work Unit No.

9. Performing Organization Name and Address (J.0. #) T7531
Ames Research Center 11. Contract or Grant No.

Moffett Field, CA 94035

13. Type of Report and Period Covered
12. Sponsoring £gency Name and Address Technical Memorandum

National Aeronautics and Space Admin.

14. Sponsoring Agency Code
Washington, D.C. 20546

(RTOP) 505-61-51

15. Supplementary Notes

xgubmitted as doctorate level thesis, Stanford University, CA. June 1985

Point of Contact: ~Stephen A. Jacklin, Ames Research Center, ms 247-1,
Moffett Field, California 94035 FTS 464-6668 or (415) 694-6668

16. Abstract

This thesis extends the Least Mean Square (LMS) algorithm to solve the multiple-input, multiple-
output problem of alleviating N/Rev helicopter fuselage vibration by means of adaptive Inverse control. A
frequency domaln locally linear model is used to represent the transfer matrix relating the higher harmonic
pitch control inputs to the harmonic vibration outputs to be controlled. By using the inverse matrix
as the controller gain matriz, an adaptive inverse regulator is formed to alleviate the N/Rev vibration.
The stability and rate of convergence properties of the extended LMS algorithm are discussed. It Is
shown that the stability ranges for the elements of the stability gain matrix are directly related to the
eigenvalues of the vibration signal information matrix for the learning phase, but not for the control
phase. The overall conclusion is that the LMS adaptive Inverse control method can form arobust vibration
control system, but will require some tuning of the input sensor gains, the stability gain matrix, and
the amount of control relaxatlon to be used. The learning curve of the controller during the learning
phase is shown to be quantitatively close to that predicted by averaging the learning curves of the normal
modes. For higher order transfer matrices, a rough estimate of the inverse is needed to start the algorithm
eficiently. The simulation results indicate that the factor which most influences LMS adaptive inverse
 control is the product of the control relaxation and the the stability gain matrix. A small stability gain
matrix makes the controller less sensitive to relaxation selection, and permits faster and more stable
vibration reduction, than by choosing the stability gain matrix large and the control relaxation term
small. It is shown that the best selections of the stability gain matrix elements and the amount of
control relaxation is basically a compromise between slow, stable convergence and fast convergence with
increased possibility of unstable identification. In the simulation studies, the LMS adaptive inverse control
algorithm Is shown to be capable of adapting the inverse (controller) matrix to track changes in the flight
.onditioas. The zlgorithm ccnvarges quickly for moderate disturbances, while tzking longer for larger
disturbances. Perfect knowledge of the inverse matrix is not required for goed control of the N/Rev
vibration. However it Is shown that measurement noise will prevent the LMS adaptive Inverse control
technique from controlling the vibration, unless the signal averaging method presented is incorporated into

the algorithm.

[
E.

17. Key Words (Suggested by Author(s}} 18. Distribution Statement
72 Active Control Rotorcraft Dynamics
X Higher Harmonic Control Unlimited
3 Multicyclic Control
Adaptive Helicopter Vibration Control Subject Category 63
19. Security Classif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price”
- Unclassified Unclassified 176

*For sale by the National Technical Information Service, Springfield, Virginia 221 61






